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Introduction
Algebraic Geometry is the study of algebraic objects using geometrical tools. It can be said

of algebraic geometry that the subject begins where equation solving ends. The main objects of
study are algebraic varieties, that is, the sets of solutions to a collection of polynomials. One of
the main problems, that serves as a yardstick of the progress made in this area, is that of classi-
fying all varieties up to isomorphism. Here we discuss birational maps as our main topic, with
the classification problem serving as our context. There will be lots on blowups, a bit about the
difference between rational and regular maps, a little on resolving singularities (with blowups),
plenty of examples and not too many technical details - a focus more on gaining an understanding
of how all the machinery of algebraic geometry fits together and what use it can be put to ;-) We
will start from the beginning, with very basic definitions – so no prior knowledge required. The
ideas and much of the text here has been kidnapped from the books [Harris], [Harts] and [Shaf].
For more information they are your first recommended ports of call.

0.1. The Classification Problem. In its strongest form, the classification problem is; to classify,
up to isomorphism, all algebraic varieties. As Hartshorne explains in [Harts] this problem can be
broken down into three smaller problems;

(i) classify varieties up to birational equivalence (much coarser than isomorphism, as we’ll
see later)

(ii) identify a good subset of a birational equivalence class and classify up to isomorphism,
for example, nonsingular projective varieties

(iii) study how far an arbitrary variety is from one of the nice varieties considered above. In
particular;
(a) how much do we need to add to a nonprojective variety to get a projective one and,
(b) what is the structure of the singularities and how can they be resolved to give a non-

singular variety
Keeping this in mind, we shall remind ourselves of some of the basic ideas and definitions, in

the next section. Then moving on to hopefully get a feel for the difference between birational
geometry and other branches of geometry.

Firstly, as I always find it helpful, before diving in to definitions we give a historical sketch of
the subject to show the development of the ideas used here.

0.2. History. Wikipedia [Wiki] says on the history of algebraic geometry;

Algebraic geometry was largely developed by Muslim mathematicians, particu-
larly the Persian mathematician/poet Omar Khayym (born 1048). He was well
known for inventing the general method of solving cubic equations by intersect-
ing a parabola with a circle. In addition he authored criticisms of Euclid’s theories
of parallels which made their way to England, where they contributed to the even-
tual development of non-Euclidean geometry. Omar Khayym also combined the
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use of trigonometry and approximation theory to provide methods of solving al-
gebraic equations by geometrical means.

Algebraic geometry was further developed by the Italian geometers in the early
part of the 20th century. Enriques classified algebraic surfaces up to birational
isomorphism. The style of the Italian school was very intuitive and does not meet
the modern standards of rigor.

By the 1930s and 1940s, Oscar Zariski, Andr Weil and others realized that
algebraic geometry needed to be rebuilt on foundations of commutative algebra
and valuation theory. Commutative algebra (earlier known as elimination theory
and then ideal theory, and refounded as the study of commutative rings and their
modules) had been and was being developed by David Hilbert, Max Noether,
Emanuel Lasker, Emmy Noether, Wolfgang Krull, and others. For a while there
was no standard foundation for algebraic geometry.

In the 1950s and 1960s Jean-Pierre Serre and Alexander Grothendieck recast
the foundations making use of sheaf theory. Later, from about 1960, the idea of
schemes was worked out, in conjunction with a very refined apparatus of homo-
logical techniques. After a decade of rapid development the field stabilised in
the 1970s, and new applications were made, both to number theory and to more
classical geometric questions on algebraic varieties, singularities and moduli.

An important class of varieties, not easily understood directly from their defin-
ing equations, are the abelian varieties, which are the projective varieties whose
points form an abelian group. The prototypical examples are the elliptic curves,
which have a rich theory. They were instrumental in the proof of Fermat’s last
theorem and are also used in elliptic curve cryptography.

While much of algebraic geometry is concerned with abstract and general state-
ments about varieties, methods for effective computation with concretely-given
polynomials have also been developed. The most important is the technique of
Gröbner bases which is employed in all computer algebra systems.
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1. Preliminaries
Lettuce start here by running through some of the basic definitions and results to get us quickly

to the next sections where the main meal for the day is. The following is taken, on the most part
from [Shaf].

1.1. Spaces.

Definition 1. We write An for the n-dimensional affine space over the field k. Its points are of
the form (α1, . . . ,αn). The main distinction between An and kn as a vector space is that the origin
plays no special role here.

Definition 2. A closed subset of An is a subset X ⊆An consisting of all common zeros of a finite
number of polynomials with coefficients in k. A closed subset defined by just one polynomial is
called a hypersurface.

Definition 3. We write Pn for the (n+1)-dimensional projective space over the field k. It consists
of all the one dimensional subspaces of the vector space kn+1. Its points we write as homogeneous
vectors (α0 : α1 : · · · αn), denoting the line spanned by (α0,α1, . . . αn) ∈ kn+1.

Definition 4. A closed subset of Pn is a subset X ⊆ Pn consisting of all common zeros of a finite
number of homogeneous polynomials with coefficients in k. Where a homogeneous polynomial or
form is a polynomial whose terms are monomials all having the same total degree (e.g. x5 +3xy4−
2x3y2 is a homogeneous polynomial of degree 5 in two variables). A closed subset defined by just
one homogeneous polynomial is called a hypersurface.

There is the notion of quasi-projective variety which unites the concepts of affine and projective
closed subsets. We shall skirt around the details here and talk of varieties (affine or projective) as
these closed subsets in the above definitions.

Before we move on to define morphisms between these spaces, let’s look at at one further con-
cept.

Definition 5. A closed set X is reducible if there exists proper closed subsets X1,X2 ( X such that
X = X1

⋃
X2. Otherwise X is irreducible.

Finally, we note a few of the properties of irreducible sets:
• Any closed set X is the union of irreducible closed sets
• If X =

⋃
Xi is an expression of X as a finite union of irreducible closed sets, and if Xi ⊂ X j

for i 6= j then we may delete Xi from the expression. Repeating this process, we arrive at
an expression X =

⋃
Xi in which Xi 6⊂ X j for all i 6= j. We say that such a representation

of X is irredundant and that the Xi are the irreducible components of X
• An irredundant representation of a closed set X is unique
• A product of irreducible closed sets is irruducible
• If Y is an irreducible subset of X , then its closure Ȳ in X is also irreducible

1.2. Morphisms. There are subtle differences between the definitions of functions and maps for
affine and projective varieties. We’ll first define them for the affine case.
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1.2.1. Morphisms in Affine Space.

Definition 6. For X ∈ An, a regular function f : X → k is an everywhere-defined, polynomial
function on an affine or projective variety X taking values in the field k.

The set of all regular functions on a given variety X forms a ring, with addition and multiplication
defined as for polynomials. This is the coordinate ring, denoted k[X ]. With each polynomial
F ∈ k[T1, . . . ,Tn] we may associated a function ϕ ∈ k[X ], by viewing F as a function on the points
of X . Thus, we have a homomorphism between the rings k[T1, . . . ,Tn] and k[X ]. The kernel of this
homomorphism consist of all the polynomials that take the value zero at all points of X . We call
this ideal the ideal of the closed set X and denote it UX . We see from this that

k[X ] = k[T1, . . . ,Tn]/UX

If we take an arbitrary ring R, can it be thought of as a coordinate ring for some space X , that is
does R = k[X ]? The answer; yes, if the ring has no nilpotents and is finitely generated as an algebra
over k.

Definition 7. For X ⊆ An and Y ⊆ Am, a map ϕ : X → Y is regular if there exist m regular func-
tions f1, . . . , fm on X such that ϕ(x) = ( f1(x), . . . , fm(x)) for all x ∈ X .

Aside. Some remarks on arbitrary maps between sets. If ϕ : X → Y is a map between sets X and
Y , then for every function u on Y (taking values in some set Z) we associate a function v on X by
taking v(x) = u(ϕ(x)). We set v = ϕ∗(u) and call it the pullback of u. Thus, ϕ∗ maps functions on
Y to functions on X .

For ϕ : X → Y a regular map between closed sets X and Y , the pullback map gives a homomor-
phism between the coordinate rings, that is, ϕ∗ : k[Y ]→ k[X ]. Notice that the kernal of ϕ∗ is zero
if and only if ϕ(X) is dense in Y . In this case ϕ∗ is an isomorphic inclusion ϕ∗ : k[Y ] ↪→ k[X ].

The above gives us the notion of when two affine varieties are the same, namely, if there exist
maps ϕ : X → Y and χ : Y → X inverse to one another in both directions, or equivalently k[X ] ∼=
k[Y ]. We say is this case that X and Y are isomorphic or biregular. Thus the coordinate ring of a
variety is an invariant. Relationships between varieties are often reflected in the algebra, as another
example; if X and Y are closed subsets of An then,

Y ⊂ X ⇐⇒ UX ⊂ UY

Definition 8. For an irreducible set X , the field of fractions of the coordinate ring k[X ] is the
function field, or the field of rational functions of X ; it is denoted k(X).

Thus, a rational function f ∈ k(X) can be written g/h with g,h ∈ k[X ] and h 6∈ UX . g/h =
g′/h′ if gh′ − hg′ ∈ UX . Thus, we may also construct k(X) as follows. Consider the subring
O⊆ k(T1, . . . ,Tn) of rational functions f = g/h with g,h ∈ k[T1, . . . ,Tn] and h 6∈ UX . The functions
in O with g ∈ UX form an ideal, MX and we have

k(X) = O/MX
5



Notice that these are not really functions at all! They do not necessarily have well-defined values
at all points of X .

Some points to note about rational functions:
• A rational function f ∈ k(X) is regular at x ∈ X if it can be written in the form f = g/h

with g,h ∈ k[X ] and h(x) 6= 0. In this case we say that the element g(x)/h(x) ∈ k is the
value of f at x, and denote it by f (x)

• A rational function that is regular at all points of a closed subset X is a regular function on
X

Definition 9. For X ⊆An and Y ⊆Am, a rational map ϕ : X 99K Y is an m-tuple of rational func-
tions f1, . . . , fm ∈ k(X), such that for all points that the fi are regular ϕ(x) = ( f1(x), . . . , fm(x))∈Y .
We say that ϕ is regular at x and that ϕ(x) ∈ Y is the image of ϕ .

1.2.2. Morphisms in Projective Space. What about functions and maps on projective space? The
problem is that a rational function

f (x0, . . . ,xn) =
g(x0, . . . ,xn)
h(x0, . . . ,xn)

on homogeneous coordinates x0, . . . ,xn is not a function of (α0 : · · · : αn)∈Pn, even when h(α0, . . . ,αn) 6=
0, as in general the values of f will change (as (α0 : · · · : αn) = (λα0 : · · · : λαn)). The solution to
this is to take f to be a homogeneous function of degree 0, that is take g and h to be homogeneous
polynomials of the same degree. We state this in the following.

Definition 10. For a projective variety X ⊆ Pn with x ∈ X , a homogeneous function of degree 0,
f = g/h with h(x) 6= 0 defines a function in a neighbourhood of x taking values in the field k. We
say that f is regular at x. If f is regular at every point of X , then we say that f is a regular function.
All regular functions on a variety X form a ring denoted k[X ].

The ring k[X ] is no longer a useful invariant when we speak of projective varieties. For any
irreducible closed projective set X , k[X ] consists only of constants. To see this in the case where
X = Pn; if f = g/h is a regular function on Pn, with g and h forms of the same degree, where we
may assume that g and h have no common factors. Then f is not regular where h(x) = 0 and so g
and h are constants.

Definition 11. For an irreducible projective variety X ⊆ Pn, a regular map ϕ : X → Pm is given
by an (m+1)-tuple of forms ( f0 : · · · : fm) of the same degree in the homogeneous coordinates of
x∈ Pn. We require that for every x∈ X at least one of the fi(x) 6= 0. Two maps ϕ(x) = ( f0 : · · · : fm)
and χ(x) = (g0 : · · · : gm) are considered to be equal when fig j = f jgi on X (0≤ i, j ≤m). We say
that ϕ maps X to Y , for some subset Y ⊆ Pm, if ϕ(X)⊆ Y .

Definition 12. For an irreducible projective variety X ⊆ Pn, write OX for the ring of rational
functions f = g/h with g and h forms of the same degree and h 6∈ UX . Writing MX for the set
of functions f ∈ OX with h ∈ UX , we have the quotient ring OX/UX which is a field, as MX is a
maximal ideal. We call this field the function field or the field of rational functions and denote it
by k(X).
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Definition 13. As in the definition of a regular map, for an irreducible projective variety X ⊆ Pn,
a rational map ϕ : X 99K Pm is given by an (m+1)-tuple of forms ( f0 : · · · : fm) of the same degree
in the homogeneous coordinates of x∈ Pn. We require that at least one of the forms does not vanish
on X . Two maps ϕ(x) = ( f0 : · · · : fm) and χ(x) = (g0 : · · · : gm) are considered to be equal when
fig j = f jgi on X (0≤ i, j ≤m). The set of points on which a rational map is regular is open. Thus,
we may say that a rational map is a regular map of some open set U ⊂ X . We say that ϕ maps X
to Y , for some subset Y ⊆ Pm, if ϕ(U)⊆ Y .

Example 14. The Segre embedding.
For X ⊆ Pn and Y ⊆ Pm, we want to consider the product space X ×Y as a projective variety. To
this end we construct an embedding of Pn×Pm in PN for some N.

Let PN have homogeneous coordinates wi j with i = 0, . . . ,n and j = 0, . . . ,m, so that N = (n +
1)(m + 1)− 1. We define ϕ : Pn ×Pm ↪→ PN by sending (x0 : · · · : xn;y0 : · · · : ym) to the point
(wi j = xiy j). Restricting this embedding to X×Y we have the product space realised as a projective
variety.

1.3. Singular Points. Before moving on to the next section let’s examine one final concept that
we’ll need later on: singular points. Instead of defining a singular point in purely algebraic terms,
via dimensions of tangent spaces, we give a pair of definitions for determining if a point on a hy-
persurface is singular; one each for the affine and projective cases.

Definition 15. For an affine hypersurface in An defined by the single equation f (x1, . . . ,xn) = 0,
the point α ∈An is singular if both f (α) and the partial derivatives evaluated at α have a common
solution, that is,

f (α) =
∂ f
∂xi |(α)

= 0

The definition for the projective case is ostensibly the same, the main difference being the exis-
tance of a theorem of Euler’s on homogenous functions (xi

∂ f
∂xi

= n f (x)). Therefore, we no longer
need the condition that f (α) = 0.

Definition 16. For a projective hypersurface in Pn defined by the single homogeneous equation
f (x0,x1, . . . ,xn) = 0, the point α ∈ Pn is singular if the partial derivatives evaluated at α have a
common solution, that is,

∂ f
∂xi |(α)

= 0
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2. Birational Maps
This section is, for me, where we start to see the theory pooling together. Let’s dive straight in.

Throughout X ,Y and Z are varieties.

2.1. Composing Rational Maps. If we are to speak of birational maps, then we had better un-
derstand how to compose two maps first. The problem raises its head, since as we have seen a
rational map is no map at all. It may be the case that for χ : X 99K Y and ψ : Y 99K Z the image of
X under χ consists only of undefined points of the map ψ and hence the composition is undefined,
even as a rational map. For example, consider the maps χ : P3 99K P3 and ψ : P3 99K P3 defined
by (x : y : z : t) 7→ (x : y : 0 : 0) and (x : y : z : t) 7→ (0 : 0 : z : t) respectively. Then what of the
composition ψ ◦χ? Argg...it’s undefined everywhere – that won’t do!

To resolve this issue let’s look at a new definition for a rational map.

Definition 17. A rational map is an equivalence class of pairs 〈U,ϕU〉 where U is an open subset
of X and ϕU is a regular map from U to Y . Two pairs 〈U,ϕU〉 and 〈V,ϕV 〉 are considered to be
equal if ϕU and ϕV agree on U ∩V .

Now, for two rational maps χ : X 99K Y and ψ : Y 99K Z we take representatives of both maps
〈U,χU〉 and 〈V,ψV 〉 and when χ

−1
U (V ) is nonempty we define the composition ψV ◦ χU of χU and

ψV to be the equivalence class 〈χ−1
U (V ),ψV ◦χU〉.

In practice to work with rational maps we think of them as in Definition ??, that is, as a collec-
tion of rational functions. Definition 17 however gives us a second way of viewing them: a rational
map ϕ : X 99K Y is a regular map on an open subset of X .

Clearly we would like to talk about surjective maps. On recalling the definition of a surjec-
tive map, we see that a rational map cannot, in general, be surjective. Indeed, for a rational map
ϕ : X 99K Y we require for surjectivity that for each y ∈ Y there exists x ∈ X such that y = ϕ(x).
Thus, we make the following definition which we may think of as surjectivity in the category of
projective spaces and rational maps.

Definition 18. A rational map ϕ : X 99K Y is dominant if for some representative 〈U,ϕU〉, and
hence all, the image of ϕU is dense in Y .

It should be clear from the definition that any two dominant rational maps are composible. To
sum up, to make ensure two maps are compatible, we may either confirm that the codimension of
the images of both maps are not greater than two or alternatively work with dominant rational maps.

Let’s look again at the algebra side of rational maps. We know that if there is a rational map
between to varieties X and Y that the pullback defines a map between the function fields of X and
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Y . More precisely, for a rational map ϕ : X 99K Y we have the pullback map ϕ∗ : k(Y )→ k(X).

Suppose that ϕ is dominant, then for any f ∈ k(Y ), ϕ∗( f ) is a well defined rational function on
X. Thus, ϕ∗ : k(Y ) ↪→ k(X) is an isomorphic inclusion.

This leads us to the following theorem;

Theorem 19. For any two varieties X and Y , we have a bijection (given by the pullback map)
between

• the set of dominant rational maps from X to Y , and
• the set of k-algebra homomorphisms from k(Y ) to k(X)

That is the category of projective varieties and dominant rational maps is equivalent to the cat-
egory of finitely generated field extensions of k with the arrows reversed. Thus, in the following we
shall think of all our rational maps to be dominant.

2.2. Birational Maps. Without further ado;

Definition 20. A birational map ϕ : X 99KY is a rational map that admits an inverse. That is, there
exists a rational map ψ : Y 99K X such that ψ and ϕ are composible and ψ ◦ϕ = idX , ϕ ◦ψ = idY .
We say in this case that X and Y are birationally equivalent or that X and Y are birational.

The notion of birationality is an equivalence relation. This gives us our first step towards the
classification problem. From what we have discussed above, we may identify when two varieties
are birational in several ways, which we state in the following theorem.

Theorem 21. The following statements are equivalent
• X and Y are birational
• K(X)∼= K(Y )
• ∃ open subsets U,V of X and Y , respectively such that U ∼= V

To bring some of the above into greater focus, we shall look next at a specific example.

Example 22. The Quadratic Surface.
One of the simplest examples of a birational equivalence is that between a quadratic surface in P3

and P2. More specifically, let’s take the quadric surface Q ∈ P3 defined by xt − yz = 0 and work
through the details of Theorem 21.

Firstly, consider the projection of Q from the point p = (0 : 0 : 0 : 1) to P2 this is the map
πp : Q−{p} → P2 that maps the point (x : y : z : t) to (x : y : z). This defines a rational map
π : Q 99K P2. Clearly im(Q) = P2. Define π−1 : P2 99K Q by (x : y : z) 7→ (x2 : xy : xz : yz). Then
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π−1 is dominant and we have π ◦π−1 = idP2 and π−1 ◦π = id(Q).

Secondly, observe that the Serge embedding of P1×P1 ↪→ P3 is Q. Thus, Q∼= P1×P1 and since
k(P1×P1) = k(x,y) we have by Theorem 21 that Q is birational to P2.

Finally, we may observe that the open subset U ∈ Q defined by U = {(x : y : z : t) : x 6= 0} is
isomorphic to A2 by the maps ξ : U →A2,(x : y : z : t) 7→ (y : z) and ξ−1 : A2 →U,(y : z) 7→ (1 : y :
z : yz). Since A2 is an open subset of P2, we have a third time that Q is birationally equivalent to P2.

Definition 23. We say that a given variety is rational if it is birational to Pn for some n.

Thus, from the previous example, Q is a rational surface or put another way both Q and P2 lie
in the same birational equivalence class.

3. The Blowup Map
The blowup map (think: balloon expanding – rather than dynamite exploding) is the typical ex-

ample of a birational map that is not an isomorphism (in general), in fact it is a regular birational
map. It also serves as the main tool in resolving singularities, which we shall see later in Section
4. We shall work up to the full definition of the blowup piece-by-piece. While the blowup is very
easy to define, it is not easy to describe what it looks like in general.

3.1. Blowup at a Point. Firstly, let’s look at the blowup of An at the point (0, . . . ,0).

Consider the quasi-projective variety An ×Pn−1. Let (a1, . . . ,an) be the affine coordinates of
An and (y1, . . . ,yn) be the homogeneous coordinates of Pn−1. Then any closed set of An×Pn−1 is
defined by polynomials in the ai and y j, homogeneous in the y j.

Definition 24. The blowup of An at the point P = (0, . . . ,0) is the subset X of An×Pn−1 defined
by the equations {xiy j = x jyi : i, j = 1, . . . ,n}.

We also have a natural map, σ : X → An defined by restricting the projection of An×Pn−1 onto
the first factor. We have then, a picture that looks like;

X � � //

σ
((QQQQQQQQQQQQQQQQ An×Pn−1

��
An
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Before we look at the properties of this blowup and the blowup at a subvariety of An, let’s have
a look at a concrete example.

Example 25. Consider the cusp C in A2, given by the equation y2 = x3. We shall blowup C at the
point p = (0,0).

Let A2 have the affine coordinates (x,y) and P1 the homogeneous coordinates (s, t). Then the
blowup X of A2 is given by the equation xt = ys. X here looks like A2, except the point p has been
replaced by P1. To obtain the total inverse image of C in X we consider the equations y2 = x3 and
xt = ys in A2×P1. Since the coordinates of P1 are homogeneous, either s or t is nonzero. Suppose
s 6= 0 then we may assume that s = 1 and we then have the equations y2 = x3 and y = xt. Substi-
tuting, we have; x2(x− t) = 0. Hence the total inverse image of C is composed of two irreducible
components; one defined by x = 0, y = 0, t arbitrary, which we will call E and the other defined by
x = t2, y = xt, this is the blow up of C, which we denote here by C̃. Pictorially this looks something
like Figure 25.

Some properties to observe
• away from the point P, we have an isomorphism between C and C̃, given by

(x,y) 7→ (x,y;
y
x
) and (x,y; t) 7→ (x,y)

• σ−1(P)∼= P1

• the points of σ−1(P) are in one-to-one correspondence with the set of lines through P.

To see this; a line L in A2 passing through P and an arbitrary point (a1,a2), with a1,a2
not both zero, can be described by the parametric equations (a1λ ,a2λ ), with λ ∈ A1.
Consider now, the line L′ = σ−1(L−P), assuming a2 6= 0, L′ is given by

(a1λ ,a2λ ;
a1λ t
a2λ

: t) = (a1λ ,a2λ ;a1 : a2)

, where λ 6= 0 since we’re not considering the point P. Notice that (a1λ ,a2λ ;a1 : a2) also
makes sense when λ = 0, this will give us the closure L̄′ of L′ in X . L̄′ and σ−1(P) meet
at the point (0,0;a1 : a2).

• X is irreducible.

X is the union of X −σ−1(P) and σ−1(P), X −σ−1(P) is isomorphic to A2−P and so
irreducible. Also, we have seen above that every point of σ−1(P) belongs to the closure
of a line in X −σ−1(P). Thus X −σ−1(P) is dense in X and, as we noted in Section 1.1,
thus we have that X is irreducible.
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Figure 1. Blowup of the cusp y2 = x3 at (0,0) on the chart s 6= 0 (image thanks to [Harts])

Next we’ll give the definition of the blowup of a variety at a point, as in Example 25 above.

Definition 26. If Y is a closed subvariety of An passing through P = (0, . . . ,0), we define the
blowup of Y at the point P to be Ỹ = σ−1(Y −P), where σ : X → An is the blowup of An at the
point P descibed in Definition 24. We denote also by σ : Ỹ → Y the restriction of σ : X → An to
Ỹ . To blowup Y at any other point Q, make a linear change of coordinates sending P to Q.

3.2. More Blowups. So far the blowups we have looked at have all been blowups at a point. We
may also blowup at a collection of points, or even along a subvariety. We may also blowup many
points, or even blowup along a subvariety. In the case of blowing up many points, the blowup
will be the same whether we blowup at all points simultaneously or blowup at one point, then
blowup the next point on the blowup, etc.. As the purpose of this exposition is to give a feel for
birational geometry, rather than all its technical details, we have chosen not to include this concept.

The following theorem will give us yet another point of view of rational maps; a rational map
ϕ : X → Pn is a regular map on a blowup of X . Hence to understand rational maps we need only
understand regular maps and blowups.

Theorem 27. Let ϕ : X 99K Pn be any rational map. Then ϕ can be resolved as a sequence of
blowups, that is, there is a sequence of varieties X = X1,X2, . . . ,Xk, subvarieties Yi ⊆ Xi and maps
πi : Xi+1 → Xi such that

(i) πi : Xi+1 → Xi is the blowup of Xi along Yi and
12



(ii) the map ϕ factors into a composition ϕ̃ ◦π
−1
k ◦ · · · ◦π

−1
1 with ϕ̃ : Xk+1 → Pn regular.

Xk+1

πk
��

ϕ̃

��.
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.

Xk

��
...

��
X2

π1
��

X
ϕ

//_______ Pn

Put in another way, after we blowup X up finite number of times, we arrive at a variety X̃ with
X and X̃ birational such that the induced rational map ϕ̃ : Xk+1 → Pn is in fact regular.

Example 28. As an example of this resolution of a rational map into a sequence of blowups, let’s
look at resolving the map π : Q 99K P2 from Example 22.

Firstly, we define the surface Γ ⊆ Q×P2 to be the surface consisting of all the points (x : y : z :
t;x : y : z) with (x : y : z : t) in Q. This is the graph of the map π : Q 99K P2.

We claim that Γ is the blowup of Q at the point (0 : 0 : 0 : 1).

Before proving this claim, note that the map ψ : Γ→ P2, given by (x : y : z : t;x : y : z) 7→ (x : y : z)
is regular.

Proof of claim:

Let Q̃ be the blowup of Q at the point (0 : 0 : 0 : 1). Then we have the following picture

Q̃
� � //

σ

''NNNNNNNNNNNNNNNN Q×P2

��
Q

where σ is the blowup map. Q̃ is defined as the set

{(x : y : z : t;α : β : γ) : xt− yz,xβ = yα,xγ = zα,yγ = zβ}

• Γ ⊆ Q̃: Let (x : y : z : t;x : y : z) ∈ Γ. Then xt = yz and α = x,β = y,γ = z, so that the
equations xβ = yα,xγ = zα,yγ = zβ are all satisfied.

13



• Q̃⊆ Γ: Let q ∈ Q̃, then q = (x : y : z : t;α : β : γ) with xt = yz,xβ = yα,xγ = zα,yγ = zβ .
We prove that on each of the three charts defined by x 6= 0, y 6= 0, z 6= 0 we have x = α,y =
β ,z = γ (we need not consider the chart on which t 6= 0 as (0 : 0 : 0 : 1;0 : 0 : 0) is not a
point of either Γ or Q̃.

Suppose x 6= 0, then we may assume that x = 1 and q is then the point (1 : y : z : t;1 :
α : β : γ). The equations t = yz,β = yα,γ = zα,yγ = zβ hold here, thus we may write
q = (1 : y : z : yz;α : yα : zα) = (1 : y : z : yz;1 : y : z). Hence we have, on the chart x 6= 0,
x = α,y = β ,z = γ . Similarly on the remaining two charts.

�

Relating back now to Theorem 27, we have resolved the rational map π : Q 99K P2 into the
composition of a blowup from Q to Γ and a regular map from Γ to P2 looking something like

Γ

σ

��

ψ

��2
22

22
22

22
22

22

Q
π

//___ P2

So far, we have seen an overview of what makes rational and birational maps tick. This is a
good step towards understanding the first of Hartshornes goals for the classification problem, that
is; classifying all varieties up to birational equivalence.

We go on now to look at his second goal, namely, identifying a ’good’ subset of a birational
equivalence and classify up to isomorphism.

14



4. Resolution Of Singularities
One such ’good’ subset of a given birational equivalence class is that of the nonsingular or

smooth varieties. For example, if we are working over a field of characteristic 0, we may throw all
the power of complex manifold theory at our problem. However, given an arbitrary variety X , does
there exist a nonsingular variety Y birational to it? This is known to be true in characteristic 0 for
all varieties, but is only known to be true in characteristic p for curves and surfaces. Still, it seems
a reasonable place to start.

We may state this in the following theorem.

Theorem 29. Let X be any variety. Then there exists a nonsingular variety Y and a regular bira-
tional map π : X → Y .

As we know from the previous section, the map π can be resolved as a sequence of blowups. We
see then that blowups are our main tool for the resolution of singularities. We have already looked
at an example of this, in Example 25 we blew-up the cusp, C in A2, given by the equation y2 = x3

at the point (0,0). The cusp C is singular at the point (0,0) and nonsingular everywhere else. The
blowup of C, C̃ is isomorphic to C outside the point (0,0), and the inverse image of (0,0) on C̃ is
isomorphic to P1. Therefore, C̃ is nonsingular.

5. Further Directions
Before completing this exposition, let’s talk through a couple of directions we could take this

theory further.

5.1. Minimal Models. We look again at the second of Hartshorne’s problems towards the classi-
fication problem; that of finding a ’good’ subset of a birational equivalence class. We say that a
representative of a given birational equivalence class is a model. As we saw in the previous sec-
tion, for most varieties we can find a nonsingular projective model in each class. What about the
uniqueness of such a model? To discuss this, we should make a definition to help us explore the
relations between models.

Definition 30. For two models X and X ′, we say that X ′ dominates X if there exists a regular
birational map ϕ : X ′ → X . A minimal model is a model such that any model which it dominates
is in fact isomorphic to it.

There is a result which tells us that every variety dominates at least one minimal model. It can be
easily shown that both the quadratic surface and P2 are minimal models and as we have seen they
both lie in the same birational equivalence class. Thus we cannot hope for the uniqueness of mini-
mal models in all dimensions. However, in the world of curves, we have a rather nice theorem; for
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nonsingular projective curves birationality is equivalent to isomorphism. Thus, nonsingular projec-
tive models are unique and the classification problem reduces to studying isomorphisms between
curves. As it turns out, we may also find a unique minimal model in the world of surfaces – if we
exclude certain types of surfaces; namely, rational surfaces and ruled surfaces (a ruled surface is a
surface birational to C×P1, where C is an algebraic curve).

5.2. Unirationality. Just to shake things up a bit let’s end with a new concept that may prove to
be a better generalisation to higher dimensions than that of birationality.

Definition 31. A variety X is unirational if there exists a dominant map ϕ : Pn 99K X , that is X is
covered by a rational variety. Or, equivalently, if k(X) embeds in a purely transcendental extension
k(x1, . . . ,xn) of k.

There is a classical theorem of the Italian school of algebraic geometry of Lüroth, that an alge-
braic curve is rational if and only if it is unirational. Or in algebraic terms a subfield of the field
k(x) that contains k and is not equal to k is in fact isomorphic to k(x). Castelnuovo and Enriques
proved the same for sufaces. Half a century later Clemens and Griffiths proved that most cubic
three-folds are unirational but not rational. Thus, it looks like this notion may porve to be the
better generalisation.
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