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Abstract

For a Fano variety V with at most Kawamata log terminal (klt) singularities and a finite group
G acting bi-regularly on V , we say that V is G-exceptional (resp., G-weakly-exceptional) if the
log pair

(
V ,∆

)
is klt (resp., log canonical) for all G-invariant effectiveQ-divisors∆ numerically

equivalent to the anti-canonical divisor of V . Such G-exceptional klt Fano varieties V are
conjectured to lie in finitely many families by Shokurov ([Sho00, Pro01]). The only cases for
which the conjecture is known to hold true are when the dimension of V is one, two, or V is
isomorphic to n-dimensional projective space for some n. For the latter, it can be shown that
G must be primitive — which implies, in particular, that there exist only finitely many such G
(up to conjugation) by a theorem of Jordan ([Pro00]).

Smooth G-weakly-exceptional Fano varieties play an important role in non-rationality
problems in birational geometry. From the work of Demailly (see [CS08, Appendix A]) it
follows that Tian’s αG -invariant for such varieties is no smaller than one, and by a theorem
of Tian such varieties admit G-invariant Kähler-Einstein metrics. Moreover, for a smooth
G-exceptional Fano variety and given any G-invariant Kähler form in the first Chern class, the
Kähler-Ricci iteration converges exponentially fast to the Kähler form associated to a Kähler-
Einstein metric in the C∞(V )-topology. The term exceptional is inherited from singularity
theory, to which this study enjoys strong links.

We classify two-dimensional smooth G-exceptional Fano varieties (del Pezzo surfaces)
and provide a partial list of all G-exceptional and G-weakly-exceptional pairs

(
S,G

)
, where S

is a smooth del Pezzo surface and G is a finite group of automorphisms of S. Our classification
confirms many conjectures on two-dimensional smooth exceptional Fano varieties.
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Chapter 1
Introduction

The aim of this thesis is to decide which smooth del Pezzo surfaces with a regular action of some

finite group G are G-exceptional and G-weakly-exceptional. One of our main applications

also requires that the G-invariant Picard rank of these G-surfaces is one and so it is natural

that our secondary aim is to identify all such smooth del Pezzo G-surfaces that are G-weakly-

exceptional under this restriction. The classification of such pairs was recently completed by

Dolgachev and Iskovskikh. We introduce this subject with a brief discussion of how to decide

the exceptionality or non-exceptionality of a given G-surface.

Let
(
S,G

)
be a smooth del Pezzo G-surface where G is a finite group of automorphisms of

S. Then how do we decide if
(
S,G

)
is exceptional or not? It is conjectured (Conjecture 16) that

there is always a divisor, a ‘wild tiger’, realising the global G-invariant log canonical threshold

(see Section 2.4). If this conjecture is true then the definitions of strongly-exceptional and

G-exceptional coincide (Conjecture 29): In every case we calculated, this is the case. Consider

the pluri-anti-canonical G-linear system | −mKS |G where m ∈ N is the smallest such that

|−mKS |G is non-empty. To decide on the exceptionality of
(
S,G

)
we ‘hunt for wild tigers’:

Firstly we examine how the representation of G on H 0
(
S,OS

(−mKS
))∼= Ck splits into a

direct sum of irreducible sub-representations, which yields candidates for our wild tigers.

Secondly, we calculate their log canonical thresholds and hence the log canonical threshold

of all divisors in |−mKS |G (lctm
(
S,G

)
). Lastly, we prove that we do indeed have a wild tiger by



2

showing that it realises the global log canonical threshold, that is that lct
(
S,G

)= lctm
(
S,G

)
.

We direct the reader to some examples of this below.

Examples. Let Sd be a smooth del Pezzo of degree d (see Definition 19). Then

(i)
(
Sd , A

)
is non-exceptional for finite Abelian A É Aut(Sd) — Lemma 30 (p 17);

(ii)
(
S1,D8

)
is exceptional — Section 6.1.3.14 (p 77);

(iii)
(
S4,G

)
is always weakly-exceptional for Z4

2 ÉG É Aut(S4) — Lemma 170 (p 138);

(iv)
(
S5,Z5

)
is not weakly-exceptional — Lemma 184 (p 148);

(v)
(
S6,G

)
is never exceptional for finite subgroups G of Aut(S6) — Section 193 (p 160).



Chapter 2
Background

For the convenience of the reader and in the interests of self-containment, this chapter collects

and presents some relevant material to provide background for the main results. More specifi-

cally, we introduce notions to measure singularities both locally and globally — discrepancies

and the log canonical threshold, an algebraic counterpart of Tian’sα-invariant. We also discuss

briefly the equivariant minimal model program and the relation of this work to the study of

conjugate subgroups of the group of birational transformations of the projective plane, Cr2(C).

2.1 Singularities of Pairs and Discrepancy

For a normal variety1 V , let ∆ = ∑
δi∆i be an effective Q-Cartier divisor where the ∆i are

irreducible Weil divisors on V . Suppose that KV +∆ isQ-Cartier so that we may consider its

numerical pull-back. Then for some variety U and a birational morphism ϕ : U −→V with

exceptional divisors Ei we may write

KU +∆U ∼Q ϕ∗(KV +∆)+∑
a(Ei ;V ,∆)Ei ,

1All varieties are considered to be normal, projective and defined over a the field of complex numbers, C—
unless explicitly stated otherwise.
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where KU , KV are the canonical divisors on U ,V , respectively; and ∆U is the strict or proper

transform of ∆ on U . The number a(Ek ;V ,∆) is called the discrepancy of the exceptional

divisor Ek with respect to the log pair
(
V ,∆

)
.

For any such birational morphism ϕ : U −→V , we say that an irreducible divisor E ⊂U

such that the image ϕ(E ) has co-dimension two or more is an exceptional divisor over V and

the image ϕ(E) ⊂ V is the centre of E on V . To get a global measure of the singularities of(
V ,∆

)
we define:

Definition 1. The discrepancy of the log pair
(
V ,∆

)
is the number

discrep
(
V,∆

)= inf
E

{
a(E;V,∆)

∣∣∣ E is an exceptional divisor over V
}

.

We impose restrictions on this global measure, defining several classes of pairs
(
V ,∆

)
. For

more details on these classes and their uses see [Kol97, KM98].

Definition 2. We say that
(
V ,∆

)
, or KV +∆ is

terminal

canonical

Kawamata log terminal (klt)

purely log terminal (plt)

log canonical (lc)


if discrep

(
V,∆

)
is



> 0,

Ê 0,

>−1 and b∆c É 0,

>−1,

Ê−1.

For ∆= 0, we say that V has terminal,canonical,log terminal or log canonical singularities if(
V ,∆

)
has (the definitions for klt and plt coincide when the boundary ∆= 0).

Remarks 3. Rather than working with all birational morphisms over V , to calculate the dis-

crepancy of some pair
(
V ,∆

)
and determine which of the above classes is belongs, it suffices

to understand the log resolution. The log resolution of the pair
(
V ,∆

)
is a birational morphism

ϕ : U −→V such that U is smooth, the exceptional divisors of ϕ and all components of the

strict transform of∆ are smooth and Supp(∆) is a simple normal crossings divisor. Hironaka’s

theorem on the resolution of singularities in characteristic zero gives us that log resolutions

exist for all pairs
(
V ,∆

)
.
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Observe also that either discrep
(
V,∆

) = −∞, or discrep
(
V,∆

)
lies between ±1. That is,

if the singularities of the pair
(
V ,∆

)
are worse than log canonical then the discrepancy can

no longer provide a measure of their severity. For an example of this behaviour where

the discrepancy of the pair is −∞, and to see how we resolve measuring how bad their

singularities are see Example 8 below.

Examples 4.

(i) Let C ⊂C2 be an irreducible curve. Then the pair
(
C2,C

)
is purely log terminal if, and

only if, C is smooth and log canonical whenever C is nodal.

(ii) ([Kol97, Theorem 3.6]) For a germ of a normal surface singularity
(
S 3 0

)
, S is

terminal

canonical

Kawamata log terminal (klt)

log canonical (lc)


⇐⇒



smooth;

C2
/(

finite subgroup of SL2(C)
)
;

C2
/(

finite subgroup of GL2(C)
)
;

simple elliptic, cusp, smooth,

or a quotient of these by a finite group.

We conclude this section with a very useful Lemma and Corollary, that we will use

frequently in the proofs of Chapter 6. For further details on any of the above, we urge the

reader to consult one of [Kol97, KM98, KSC04].

Lemma 5 (Convexity). Let V be a Q-factorial variety, with ∆, Z effective Q-divisors on V .

Suppose that
(
V ,∆

)
and

(
V , Z

)
are log canonical. Then, for α ∈Qwith 0 ÉαÉ 1,

(
V ,α∆+ (1−α)Z

)
is log canonical.

Proof. Assume that
(
V ,α∆+(1−α)Z

)
is not log canonical, consider its log resolution V −→V

and compare discrepancies on V .

Corollary 6 (cf. [CS08, Remark 2.23]). Let V be a Q-factorial variety, with effective Q-divisors

D = ∑r
i=1 di Di and Z = ∑r

i=1 zi Di where di , zi ∈QÊ0 and the Di are prime Weil divisors for
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i ∈ {1, . . . ,r }. Suppose that D ∼Q Z ; the log pair
(
V , Z

)
is log canonical at a point P ∈ V and(

V ,D
)

not log canonical at P. Write

α= min

{
di

zi

∣∣∣zi 6= 0

}
.

Then α is well-defined as there are zi 6= 0, 0 Éα< 1 and since we may write D =αZ + (1−α)∆,

where

∆=
r∑

i=1

di −αzi

1−α Di ∼Q D,

it follows from (the contra-positive of) Convexity (Lemma 5) that
(
V ,∆

)
is not log canonical

and there exists at least one component of the divisor Supp(Z ) that is not contained in Supp(∆).

Example 7. Our use of the Convexity Lemma can be seen in detail in the proof of Lemma 103

(after Figure 6.1, page 54).

2.2 Log Canonical Threshold

Lettuce begin with an example.

Example 8. Consider an irreducible curve C on C2 with a simple cuspidal point O (e.g. C

is defined by y2 = x3), and let σ1,σ2,σ3 be a series of blow-ups with exceptional divisors

E1,E2,E3, as in Figure 2.1. Writing σ : X −→ C2 for the composition of the maps σi , CX for

the strict transform of C on X , and by abusing notation Ei for the strict transforms of the Ei

for i = 1,2,3; we see that σ is a log resolution and that

KX +CX =σ∗(
KC2 +C

)−E1 −E2 −2E3.

Thus discrep
(
E3;C2,C

) = −2 and so
(
C2,C

)
is not log canonical. Worse, if we blowup at a

smooth point on E3 not on E1,E2 or CX and then continue to blowup at the intersection

between E3 and the new exceptional divisor Fk we see that

discrep
(
Fk;C2,C

)−−−−→
k−→∞

−∞.
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σ1 σ2

C C1 C2 CX3E2

2E1

6E3

2E1

3E2

2E1

σ3

Figure 2.1: The log resolution of a cusp C ⊂C2.

To rectify our failure to measure this singularity we observe that the pair
(
C2,λC

)
is log

canonical for λ= 0 and not for λ= 1 — thus we may ask: How ‘much’ of C can we take for

this singularity to jump back onto our scale in Definition 2? That is to say, what is the largest

λ ∈QÊ0 such that
(
C2,λC

)
is log canonical.

From the log resolution σ : X −→C2, we have that

KX +λCX =σ∗(
KC2 +λC

)+ (1−2λ)E1 + (2−3λ)E2 + (4−6λ)E3.

As we want discrep
(
C2,λC

)Ê−1, it follows that λÉ 5
6 . We call this number the log canonical

threshold of
(
C2,C

)
at the point O.

The log canonical threshold (lct) is an algebraic counterpart to the complex singularity

exponent (cf. [Var82, Var83, Kol97, DK01]). Indeed, consider a polynomial f ∈C[X1, . . . , Xn]

with a singularity at a point P . To study the complexity of this singularity, a natural starting

point is to look at the multiplicity of f at the point P which can be defined as

multP ( f ) = min

{
m

∣∣∣ ∂m f

∂m1 z1∂m2 z2 . . .∂mn zn
(P ) 6= 0

}
.

Contrast this with the more subtle invariant, the complex singularity exponent of f at P ,

defined by integrations as follows

cP ( f ) = sup
{

c
∣∣∣ | f |−2c is locally integrable near the point P ∈Cn

}
.
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From [Kol97], it follows that

cP
(

f
)= lctP

(
Cn ,D

)
,

where D is the divisor on Cn defined by the zeros of f and lctP
(
Cn ,D

)
is the log canonical

threshold at the point P of the pair
(
Cn ,D

)
, defined explicitly below.

Definition 9. Let V be a variety with at worst log canonical singularities, Z ⊆ V a closed

sub-variety and ∆ an effectiveQ-Cartier divisor on V . Then the log canonical threshold (lct)

of the log pair
(
V ,∆

)
along Z is the number

lctZ
(
V ,∆

)= sup
{
λ ∈Q

∣∣∣ (
V ,λ∆

)
is log canonical along Z

}
∈Q∪ {+∞} ,

where
(
V ,λ∆

)
is log canonical along Z whenever Z * LCS

(
V,λ∆

)
(see Definition 87). For our

purposes, we shall only need this definition on the case where Z is a point.

We can also consider the log canonical threshold of ∆ along the whole of V , lctV
(
V ,∆

)
,

which we write simply as lct
(
V ,∆

)
;

lct
(
V ,∆

) = inf
{

lctP
(
V ,∆

)∣∣∣ P ∈V
}

= sup
{
λ ∈Q

∣∣∣ the log pair
(
V ,λ∆

)
is log canonical

}
.

Example 10 ([CPS08, Example 1.1.3]). Let D be a cubic curve on the projective plane P2.

Then

lct
(
P2,D

)=



1 if D is a smooth curve,

1 if D is a curve with ordinary double points,

5

6
if D is a curve with one cuspidal point,

3

4
if D consists of a conic and a line that are tangent,

2

3
if D consists of three lines intersecting at one point,

1

2
if Supp

(
D

)
consists of two lines,

1

3
if Supp

(
D

)
consists of one line.

Remark 11. Let S be a smooth surface with some effective Q-divisor ∆. Suppose that the

pair
(
S,∆

)
is not log canonical at some point P , but log canonical at all other points on S. Let
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π : Y −→ S be the blow-up of S at the point P , with exceptional divisor E . Write ∆Y for the

strict transform of ∆ on Y . Then there exists a point Q ∈ E such that the following inequality

holds:

multP∆+multQ∆Y > 2.

Indeed, if there are one-dimensional centres of log canonicity on Y then multP∆> 2 and

every point on E satisfies the inequality. Suppose then that multP∆É 2. From the equivalence

π∗(
KS +∆

)≡ KY +∆Y + (multP∆−1)E

we see that there must exist some point Q ∈ E such that the pair
(
Y ,∆Y + (multP∆−1)E

)
is

not log canonical there. Observe then that as multP∆> 1 (∆Y + (multP∆−1)E is effective),

the above inequality holds.

2.3 G-Varieties

Definition 12. For a variety V of dimension n and a finite group G , we say

•
(
V ,G

)
(or simply V ) is a G-variety if G acts bi-regularly on V — that is, G É Aut(V);

• a morphism (resp., birational map) ϕ : V −→U is G-equivariant if the action of ϕ◦G ◦
ϕ−1 on U is bi-regular, i.e. U is a (ϕ◦G ◦ϕ−1)-variety. Thus, two subgroups of Aut(V)

define isomorphic G-varieties if and only if they are conjugate in Aut(V);

• V is G-rational if there exists a G-equivariant birational map ψ : V 99KPn .

2.4 G-Invariant Global Log Canonical Threshold

Let V be a Fano variety with at worst log terminal singularities, that is a variety where −KV is

ample. Let also G be a finite2 subgroup of the automorphism group of V and consider the

Fano G-variety
(
V ,G

)
.

2Though finite groups are enough for our porpoises here, we may define the G-invariant global lct when G is
compact. However, in this case we must be careful to consider G-invariant linear sub-systems ∆⊂ |−KV | and not
only G-invariant divisors (see [CS08, Definition 1.21]).
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Definition 13 ([CS08, Section 1]). The G-invariant global log canonical threshold of
(
V ,G

)
is

defined to be the number

lct
(
V ,G

)= inf
{

lct
(
V ,∆

)∣∣∣∆ is an effective G-invariantQ-divisor on V such that ∆∼Q −KV

}
.

This is an algebraic counterpart to the α-invariant introduced by Tian (see [Tia87]).

Moreover, for a smooth Fano variety V and a finite group G the equality

αG
(
V

)= lct
(
V ,G

)
holds ([CS08, Appendix A]).

Due to the rational connectedness of V ([Zha06]), we may re-formulate this definition as

lct
(
V ,G

)= sup
{
λ ∈Q

∣∣∣ the log pair
(
V ,λ∆

)
is lc for all G-invariantQ-divisors 0 É∆≡−KV

}
.

Remark 14. The above definition of the log canonical threshold is, in practise, difficult to

work with. As we mentioned in the Introduction (Chapter 1) to calculate these thresholds we

look in the pluri-anti-canonical linear systems for the ‘worst’ G-invariant divisors (i.e. those

with the smallest log canonical threshold) and prove that they realise the global G-invariant

log canonical threshold. It makes sense then to split the definition with an intermediate

definition as follows.

Definition 15.

lctm
(
V ,G

)= sup

{
λ ∈Q

∣∣∣ the log pair
(
V ,

λ

m
∆

)
is lc for all divisors ∆ ∈ |−mKV |G

}
.

Then

lct
(
V ,G

)= inf
{

lctm
(
V ,G

)∣∣∣m ∈N
}
Ê 0.

Note that when |−mKV | contains no G-invariant divisors, lctm
(
V ,G

)
is defined to be +∞.

Notation For a divisor H on V , we write |H |G for the set of all effective G-invariant divisors

linearly equivalent to H , that is all the G-invariant members of |H |.
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To date, no Fano varieties with non-rational global log canonical thresholds have been

found. We expect this property to hold for all global log canonical thresholds. Furthermore,

we expect that the global log canonical threshold is realised by a divisor in one of the pluri-

anti-canonical linear systems (see [CPS08, Conjecture 1.1.11] and [Tia90a]). These divisors,

numerically equivalent to the anti-canonical divisor, whose log canonical threshold realises

the global log canonical threshold are called wild tigers. In this colourful language of Keel-

MacKernan ([KM99]), we say that the calculation of global log canonical thresholds is, in part,

the hunt for wild tigers (cf. [CP02]).

In this work we confirm, in every case we calculated, the following conjecture for the case

where
(
X ,G

)
is a smooth del Pezzo G-surface and G is finite.

Conjecture 16. For a Fano variety V , let G be a finite subgroup of Aut(V). Then there exists an

effective G-invariantQ-divisor, ∆∼Q −KV such that

lct
(
V ,G

)= lct
(
V ,∆

) ∈Q.

2.5 Minimal G-Surfaces and Conjugacy in the Cremona Groups

2.5.1 Rational varieties and the minimal model program

The minimal model program (MMP) is a method for choosing a ‘good’ representative for each

birational class and for deciding which class any given variety lies. The simplest birational

class is of course the rational varieties — varieties V which admit a birational map to the

projective plane V 99K Pn . Recently in [BCHM10], this program was almost completed in

all dimensions and has been the focus of much of the past few decades activity in algebraic

geometry. Below we summarise very briefly the MMP and direct the reader to the well written

paper [BCHM10], or the book [Mat02] for further details.

For a given smooth variety,V , the program has two possible outputs: Either a minimal

model, a (possibly mildly singular) variety birational to V with numerically effective (nef)3

canonical class; or a Mori fibre space, V −→ S, where S is projective, dim
(
V

)> dim
(
S
)

and

3An R-Cartier divisor ∆⊂V is numerically effective, or nef if ∆ ·C Ê 0 for all irreducible curves C ⊂V .
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the anti-canonical divisor on a fibre is ample (so that the fibres are Fano).

For smooth surfaces, the theory is much simpler and was laid out in the early twentieth

century by the Italian School. Unlike in higher dimensions, if we start with a smooth surface,

our output is also smooth. For a smooth surface S, Castelnuovo’s contractibility criterion tells

us we may contract all the (−1)-curves on S. The result is either a (unique) minimal model,

or ruled surface — that is, either a Mori fibre space from S to a point, i.e. P2; or a fibre space

over a curve, a Hirzebruch surface Fn =PP1

(
OP1 ⊕OP1 (n)

)
, with n 6= 1. Both these results can

be collected under the label minimal: We call a surface S minimal if any birational map

ϕ : S 99K T is in fact an isomorphism. For the rational surfaces the above can be summarised

by the following classical proposition.

Proposition 17 ([Bea96, Theorem V.10]). Let S be a minimal rational surface. Then S is

isomorphic to P2, or to one of the Hirzebruch surfaces.

Consider a group G acting biregularly on a smooth surface S, then we say that
(
S,G

)
is

a minimal G-surface whenever any G-equivariant birational map ϕ : S 99K T is an isomor-

phism (cf. [Bla06, Definition 2.2.2],[DI10, Section 3.2]). Obviously this agrees with the usual

definition of minimal when G is trivial. These minimal G-surfaces are the output of the

G-equivariant minimal model program. In much the same way as without the group action,

given a specific surface we contract G-orbits of disjoint exceptional curves on it obtaining

a minimal G-surface (see [KM98, Example 2.18]). We have a similar answer as before by

Dolgachev and Iskovskikh (cf. [Isk80, Theorem 1]).

Proposition 18 ([DI10, Theorem 3.8]). Let S be a minimal rational G-surface4. Then either(
S,G

)
admits a structure of a conic bundle with PicG(S)∼= Z2, or

(
S,G

)
is isomorphic to a del

Pezzo G-surface with Pic(S)G∼= Z.

Definition 19. A del Pezzo surface X is a Fano variety of dimension two. That is, a surface

with ample anti-canonical divisor. The degree dX of X is the number K 2
X É 9, where KX is

the anti-canonical class. A smooth del Pezzo surface is rational and isomorphic to either P2,

P1 ×P1 or P2 blown up in 9−dX points (see Section 5.1.1 for further details).

4Let S be a smooth minimal del Pezzo surface, then we assume in this thesis that PicG(S) =Z, unless stated
otherwise.
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2.5.2 Conjugacy in the Cremona groups

The Cremona group, Crn(C), is the group of birational automorphisms of projective n-space,

Pn
C

. The Cremona group of the projective line is isomorphic to PGL2(C). The Cremona group

of the plane, Cr2(C), is already large and complex. In higher dimensions, our understanding

is even poorer. One step towards a holistic understanding of the structure of Crn(C) is the

ability to describe the conjugacy classes (see Definition 98) of Crn(C). A modern approach

to this, initiated by Iskovskikh and Manin (see e.g. [Man67, Isk80]), is to consider rational

G-varieties and G-equivariant maps between them.

Theorem 20 ([DI10, Theorem 3.6]). For a finite group G É Crn(C), there is a natural corre-

spondence between G-equivariant birational isomorphism classes of rational G-varieties and

conjugacy classes of subgroups of Crn(C) isomorphic to G.

Sketch of Proof. Let V be a rational G-variety of dimension n.

• Since V is rational there is a birational map ϕ : V 99KPn that realises G É Aut(V) as a

subgroup ϕGϕ−1 É Crn(C).

• For G-variety U and a G-equivariant birational map U 99K V , U and V clearly define

conjugate subgroups in Crn(C) (cf. Definition 12).

• For a finite subgroup G É Crn(C), there exists a smooth variety V and a birational map

ψ : V 99KPn that ‘resolves the indeterminacy of’ ([dFE02]) or ‘regularises’ ([Che04]) G

— that is, ψGψ−1 acts regularly on V .

For V a rational G-variety of dimension n with G É Crn(C) finite, two questions that

naturally arise (cf. [Che09, Appendix B]) are:

Question 21. Classify G (up to isomorphism) with some restriction (simple, Abelian, cyclic,. . .).

Question 22. For a given G É Crn(C) describe its conjugacy class.

There are many existing answers to Questions 21 and 22 and as we will see in Section 4.1

the results of this thesis my be applied in certain situations to help decide on Question 22

(see Example 50).
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Examples 23.

• Blanc in [Bla08] completes the classification of conjugacy classes of finite cyclic sub-

groups of Cr2(C).

• It follows from the classification of finite subgroups of Cr2(C) in [DI10] that if G is a

finite simple non-Abelian subgroup of Cr2(C) then G ∼= A5,A6 or PSL2(F7).

• Prokhorov shows in [Pro09] that if G is a finite simple non-Abelian subgroup of Cr3(C),

then G ∼= A5,A6,PSL2(F7),SL2(F8) or SU2(F4).

• ([Che09, Theorem B.2]) The group Cr2(C) contains 3,1,2 conjugacy classes of sub-

groups isomorphic to A5,A6,PSL2(F7), respectively. The conjugacy classes can be

represented by the G-surfaces
(
P2,A5

)
,
(
S5,A5

)
,
(
P1 ×P1,A5

)
;
(
P2,A6

)
;
(
P2,PSL2(F7)

)
and

(
S2,PSL2(F7)

)
respectively, where Sd is a smooth del Pezzo surface of degree d .

Observation 24. Let V be a rational n-dimensional variety and G a finite group acting

regularly on V . Suppose that V is non-G-rational — that is, any birational map ψ : V 99KPn

cannot be G-equivariant (Definition 12). Then clearly ψGψ−1� Aut(Pn). However since V is

rational there is a birational map ϕ : S 99KPn and so ϕGϕ−1 É Crn(C) (and the choice of the

map ϕ is independent of the conjugacy class of ϕGϕ−1). So we conclude that G É Crn(C) is

not conjugate to a subgroup of Aut(Pn).

Let us see how to apply this observation to see that Cr2(C) contains at least two conjugacy

classes of subgroups isomorphic to PSL2(F7).

Example 25. Let S be the unique smooth del Pezzo surface of degree two with automorphism

group G =PSL2(7). Then by [DI10], PicG(S) =Z and there is a birational map θ : S 99KP2. By

Observation 24 it follows that θGθ−1 is a subgroup of Cr2(C) but not Aut(P2). Furthermore,

from [DI10], we also know that G ′ =PSL2(7) acts regularly on P2 such that (P2,G ′) is minimal.

Hence G is not conjugate to G ′ in Cr2(C).

In Section 4.1, we will see that together with a theorem of Pukhlikov and Cheltsov (The-

orem 47) we can use this simple observation to answer similar questions of conjugacy in

higher dimensional Cremona groups.



Chapter 3
Main Results

In this Chapter we introduce the notion of exceptionality and ask ‘when is a smooth del Pezzo

surface G-exceptional?’ We also summarise what is currently known and present our results,

the main of these being that except in degree six and the non-Kähler-Einstein del Pezzo surfaces

(that is, the blowups of the projective plane in one or two points) there exist, in each degree,

groups G such that smooth del Pezzo G-surfaces are G-exceptional.

3.1 Exceptionality

Let V be a Fano variety with at most klt singularities.

Definition 26. Then V is G-exceptional if there exists a finite group G acting biregularly on

V such that the log pair
(
V ,∆

)
is klt for all G-invariantQ-divisors

0 É∆≡−KV .

For a given finite G É Aut(V), we say that the pair
(
V ,G

)
is exceptional if it satisfies the above

hypothesis.

Such G-exceptional klt Fano varieties are known to lie in finitely many families in dimen-

sions one and two and conjectured to in higher dimensions ([Sho00, Pro01]). We also make
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two related definitions, those of weakly and strongly-exceptional Fano G-varieties.

Definition 27. For finite G É Aut(V),
(
V ,G

)
is weakly-exceptional (respectively, strongly-

exceptional) if the G-invariant log canonical threshold (Section 2.4), lct
(
V ,G

)Ê 1 (respectively,

lct
(
V ,G

)> 1).

Remarks. Observe that:

• strongly exceptional ⇒ exceptional ⇒ weakly exceptional;

•
(
V ,G

)
is weakly-exceptional but not strongly-exceptional ⇐⇒ lct

(
V ,G

)= 1.

Due to Shokurov connectedness (Theorem 92), we have the following sufficient condition

for weak-exceptionality on certain del Pezzo G-surfaces.

Lemma 28. Let S be a smooth del Pezzo G-surface with G finite and suppose that

(i) there are no G-fixed points on S and;

(ii) PicG(S) =Z and is generated by the anti-canonical class.

Then S is G-weakly-exceptional.

Proof. Suppose that (i) and (ii) hold but that lct
(
S,G

) < 1. Let λ ∈ Q such that lct
(
S,G

) <
λ< 1. Then there exists an effective G-invariant Q-divisor D =∑r

i=0 di Di ≡−KS where the

Di are prime Weil divisors and
(
S,λD

)
is not log canonical. By Shokurov Connectedness

(Theorem 92), LCS
(
S,λD

)
is connected. If LCS

(
S,λD

)
is zero-dimensional, then it is a point —

but this violates (i). Thus it is one-dimensional and so there is a dk such that λdk > 1. Writing

D = dk
(
∆1 +·· ·+∆k

)+Ω, where ∆1 +·· ·+∆k is a G-orbit of ∆k = Dk and Ω is a one-cycle on

S whose support doesn’t contain the G-orbit ∆1 +·· ·+∆k . Clearly ∆1 +·· ·+∆k ∈ |−µKS |G for

some µ ∈Z>0 by (ii). However, intersecting λD with −KS leads to a contradiction:

λK 2
S =λD · (−KX ) Êµλdk K 2

S >µK 2
S .

That is, 1 >λ>µ which implies that µÉ 0.

The truth of Conjecture 16 would imply the following.
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Conjecture 29.
(
V ,G

)
exceptional ⇐⇒ (

V ,G
)

strongly-exceptional.

Suppose that V is aQ-factorial variety with finite automorphism group, G then we already

know a large class of G-varieties that are never G-exceptional.

Lemma 30. Suppose that G is a finite Abelian group and that | −KV | 6= ;, then there exist

G-invariant curves in |−KV |.

Proof. The group G acts naturally on the space H 0
(
V ,OV (−KV )

)
which is isomorphic to Cn ,

for some n. As G is Abelian, the representation of G on Cn splits as a direct sum of 1-dim

sub-representations (see for example, [JL01, Thm 9.8]). Each of these corresponds to a 1-dim

irreducible subspace of Cn — that is, curves on V belonging to |−KV |G .

Remark 31. If the action of G on Cn is such that Eigenvalues of k sub-representations agree,

then we have a G-invariant dimension k sub-linear system of |−KV |.

Corollary 32. The G-variety V is never G-exceptional whenever G is Abelian.

3.2 Questions

We have two main applications for our smooth exceptional del Pezzo G-surfaces of degree

d ,
(
Sd ,G

)
. One birational in flavour (Section 4.1) and the other regarding Kähler geometry

(Section 4.2). For Sd G-weakly-exceptional, Theorem 52 tells us that these G-surfaces admit

a Kähler-Einstein metric and moreover by Theorem 56 the Kähler-Ricci flow converges. If

Sd is G-strongly-exceptional then also the Kähler-Ricci iteration converges (Theorem 58).

We may also answer certain questions of conjugacy in higher rank Cremona groups with the

aid of Theorem 47 and Observation 24 whenever
(
Sd ,G

)
is a minimal G-weakly-exceptional

G-birationally super-rigid G-surface. For details see Chapter 4. Bearing these various appli-

cations in mind we ask:

Question A. For a fixed degree d, when does there exist a finite group G É Aut(Sd) such that

the pair
(
Sd ,G

)
is G-exceptional or G-weakly-exceptional?

Question B. For a fixed degree d, what are all the possible finite groups G É Aut(Sd) such that

the pair
(
Sd ,G

)
is G-exceptional or G-weakly-exceptional?
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Question B is too large in scope for us to handle here, so we narrow the focus by restricting

ourselves to considering only minimal smooth del Pezzo G-surfaces1. This is a natural

restriction as the application of Theorem 47 requires PicG(Sd) = Z which is satisfied by

minimal pairs
(
Sd ,G

)
that are not conic bundles (cf. Theorem 18).

Question C. For a fixed degree d, which of the possible finite groups G = Aut(Sd) such that

PicG(Sd) =Z yield a G-exceptional or G-weakly-exceptional pair
(
Sd ,G

)
?

Informally, we’ll look at the Dolgachev-Iskovskikh ([DI10]) classification of finite sub-

groups of the Cremona group Cr2(C). There they realise each of the subgroups as an G-action

on a smooth del Pezzo surface Sd with PicG(Sd) = Z (fibrations) or Z⊕Z (conic bundles).

Thus we have a list of all pairs (Sd ,G) for Sd a smooth del Pezzo G-surface, G = Aut(Sd) and

PicG(Sd) =Z for which we can calculate global G-log canonical thresholds.

3.3 Existing Answers

There exist previous partial answers to our Question A in the literature. In [Che08], we find

the calculation of global log canonical thresholds for all smooth del Pezzo surfaces without

the action of a group.

Theorem 33 ([Che08]). Let S be a smooth del Pezzo surface. Then

lct
(
S
)=



1 when K 2
S = 1 and |−KS | has no cuspidal curves,

5/6 when K 2
S = 1 and |−KS | has a cuspidal curve,

5/6 when K 2
S = 2 and |−KS | has no tacnodal curves,

3/4 when K 2
S = 2 and |−KS | has a tacnodal curve,

3/4 when S is a cubic surface in P3 without Eckardt points,

2/3 when K 2
S = 4 or S is a cubic surface in P3 with an Eckardt point,

1/2 when S∼= P1 ×P1 or K 2
S ∈ {

5,6
}
,

1/3 in the remaining cases.

1Let S be a smooth minimal del Pezzo surface, then we assume in this thesis that PicG(S) =Z, unless stated
otherwise.
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Moreover in the same paper, Cheltsov determines the G-invariant global log canonical

threshold of some smooth del Pezzo G-surfaces, partially answering Question A. To be precise,

we summarise what is calculated in [Che08] in the following — details to be found in Section

5 of [Che08] or the relevant section of Chapter 6.

Proposition 34. Let Sd be a smooth del Pezzo surface of degree d with prescribed automor-

phism group G. Then

• lct
(
S3,G

)=


2 when G =A5 or S5,

4 when G =Z3
3oS4;

• lct
(
S5,G

)=


4

5
when G =Z5,

2 when G =A5 or S5;

• lct
(
S6,G

)É 1.

• lct
(
P2,G

)=


2

3
when G =A5,

4

3
when G =PGL2(F7),

2 when G =A6;

In fact, for
(
P2,G

)
the work of Markushevich-Prokhorov ([MP99b, MP99a, Pro00]) in com-

bination with that of Cheltsov-Shramov ([CS09]) completely answers Questions A and B in

the exceptional case. Using the Miller-Blichfeldt-Dickson classification of finite subgroups of

GL3(C) ([BDM16]), Markushevich-Prokhorov give a classification of the groups G ÉPGL3(C)

for which the pair
(
P2,G

)
is exceptional. Recently, Sakovics in [Sak10] extended these results

classifying also those weakly-exceptional
(
P2,G

)
, G É PGL3(C). We present a summary of

these works in Sections 4.3 and 6.9.

3.4 Main Results

In this thesis, we answer completely Question A and partially Question C of Section 3.2. More

precisely, we answer Question C completely for smooth del Pezzo G-surfaces of degrees

1, . . . ,5 for in both the G-exceptional and G-weakly-exceptional cases. In degree six, we give

a necessary condition for G-weak-exceptionality but do not provide a list of such groups.

For the non-Kähler-Einstein del Pezzo G-surfaces we show that their global G-lct at most

two-thirds, and hence they cannot be G-weakly-exceptional. For P1 ×P1, we obtain a partial

answer and give a scheme we hope will furnish a list of groups to answer Question C in full.

Finally, for the projective plane, Question C is completely answered in the G-exceptional
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case by Markushevich-Prokhorov and Cheltsov-Shramov as we mentioned above; and in the

G-weakly-exceptional recently by Sakovics. We present these results below.

Theorem 35. Let Sd be a general2 smooth minimal del Pezzo G-surface of degree d = K 2
Sd

É 5

with prescribed automorphism group G. Then

Sd is G-exceptional ⇐⇒



d = 1, G =D8, Z2•D4,D12,D16, Z2•D12, Z2•A4, Z3 ×D8,

Z2 ×Z3•D6, Z6•D12, Z3 ×Z2•S4;

d = 2, G =S4 ×Z2,
(
Z2

4oS3
)×Z2, PSL2(F7)×Z2;

d = 3, G =S5, Z3
3oS4;

d = 4, G =Z4
2oS3, Z4

2oD10;

d = 5, G =S5,A5.

Sd is G-weakly-exceptional

— but not G-exceptional
⇐⇒



d = 1, G =Z2, Z2 ×Z2, Z4, Z6, Z2 ×Z6, Z2 ×Z12;

d = 2, G =Z2, Z2 ×Z2, Z2 ×Z2 ×Z2,S3 ×Z2,D8 ×Z2,(
Z2oD8

)×Z2, Z4•A4 ×Z2;

d = 3, G =S3,S3 ×Z2,S4, Z3
(
Z2oZ2

3

)
, Z3

(
Z4oZ2

3

)
;

d = 4, G =Z4
2, Z4

2oZ2, Z4
2oZ4;

d = 5, G =Z5oZ4.

Proof. See Chapter 6; Theorems 104, 133, 151, 173, 183.

Corollary 36. For all d É 5, there exists Sd — a smooth minimal del Pezzo surface of degree d

that is
(
Aut(Sd)

)
-exceptional.

Remark 37. For d É 5, Aut(Sd) is finite by Lemma 78.

We also summarise what we know in the case where the degree of our smooth del Pezzo

is greater than five; further details can be found in the relevant section of Chapter 6.

Lemma 38. Let S6 be a smooth del Pezzo G-surface of degree six and G É Aut(S6), then

lct
(
S6,G

)É 1.

2The required generality is made explicit in restrictions on the parameters of the defining equations of Sd —
see the relevant section of Chapter 6, or Tables 7.2–7.6.
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Proof. There are exactly six (−1)-curves on S6 (see Table 5.2) and thus the divisor formed

by their sum is a G-invariant member of | −KSd | for any G acting biregularly on S6 (see

Section 6.6).

Corollary 39 (to the proof of Lemma 38). There are no G-exceptional smooth del Pezzo G-

surfaces of degree six.

We have the following criterion for deciding on the G-weak-exceptionality of a smooth

del Pezzo G-surface of degree six — but not a classification.

Theorem 40 (Theorem 194). For a smooth del Pezzo G-surface S6 of degree six such that

PicG(S6) =Z,

lct
(
S6,G

)= 1

if, and only if,
(
S6,G

)
has no G-fixed points.

Non-Kähler-Einstein del Pezzo G-surfaces are of course non-G-exceptional. Indeed, let S

be the blowup of P2 in one or two points and observe that by Theorem 53, S does not admit a

Kähler-Einstein metric and hence by the contra-positive of Theorem 52, lct
(
S,G

)É 2
3 . There-

fore the G-surface S is not G-weakly-exceptional for any G . Furthermore, by Theorem 33,

lct(S) = 1
3 and thus

1

3
É lct

(
S,G

)É 2

3
.

Theorem 41 (cf. Section 6.7). Let S be the blowup of P2 in two points, then lct(S,G) = 1
3 for

any G acting bi-regularly on S.

Proof. If S = S7 is the blowup of two points Q1,Q2 ∈ P2 with exceptional curves F1,F2 over

Q1,Q2 respectively, then there is a G-invariant divisor in | −KS7 |. Indeed, we may write

−KS7 = 3M +2F1 +2F2 where M is the strict transform under the blowup map of the line

between the points Q1,Q2 and it follows that lct
(
S7,G

)É 1
3 .

For P1 ×P1, we present below a partial answer to our Questions of Section 3.2. We hope

to answer fully our questions with a scheme we present in Section 6.8.1.
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Corollary 42 (Theorem 201). Let A be a finite subgroup of PGL2(C) such that

lct
(
P1 ×P1, A× A

)> 1.

Then A∼= A5,A4 or D2n for some n ∈N.

As we mentioned in the previous section (Section 3.3) for the projective plane the G-

exceptional version of Question B is completely answered by Markushevich-Prokhorov and

Cheltsov-Shramov (see Sections 4.3 and 6.9). For the G-weakly-exceptional version of Ques-

tion B we have laid out in Section 6.9.1 what is required for a complete answer (in fact, this

was recently done by Sakovics in [Sak10]).

By Proposition 64 ([MP99b, Corollary 2.3]) for a finite group G ÉGL3(C) without reflec-

tions (which we may always assume — see Section 4.3) if P2 is
(
π(G)

)
-exceptional then G is

primitive, where π :GL3(C) −→PGL3(C) is the natural map.

Proposition 43 (Proposition 205). Let G be a primitive subgroup of GL3(C). Then

lct
(
P2,π(G)

)


É 2
3 if G is of type H — i.e. π(G)∼= A5,

É 1 if G is of type E (|π(G)| = 36),

> 1 otherwise (see Proposition 204 for a list of possibilities).

For full details on the groups of type E and H see [BDM16, Section 115]. We summarise

in the proof of Proposition 205 what is described in detail there.



Chapter 4
Applications of Main Results

Here we take the opportunity to present various applications of our results and some corre-

spondences to other areas of mathematics. In particular, we see how to apply our classifica-

tion of G-weakly-exceptional smooth del Pezzo G-surfaces with Picard rank one to problems

of conjugacy in higher rank Cremona groups. It is known, by a result of Tian, that on all

G-strongly-exceptional smooth G-Fano varieties there exists a G-invariant Kähler-Einstein

metric. Moreover, recently Rubinstein showed that given any Kähler form in the first Chern

class, the Kähler-Ricci iteration converges exponentially fast to the Kähler form associated to a

Kähler-Einstein metric in the C∞(V )-topology. Lastly, we examine the correspondence with

quotient singularities, where we see that our Questions A and B of Section 3.2 are answered for

P2.

4.1 Conjugacy in Higher Rank Cremona Groups

In Section 2.5.2 we discussed conjugacy in the Cremona groups. In particular we observed

(Observation 24) that if we find rational varieties of dimension n that are non-G-rational

(Definition 12) for a finite group G then we can conclude that G is not conjugate to a subgroup

of Aut(Pn), whilst of course belonging to a conjugacy class of Crn(C). Below, using Theorem 47

and our classification of smooth minimal G-weakly-exceptional del Pezzo surfaces, we see

how to apply this observation to subgroups of Cr2k(C) for k ∈ N. First, let us make some
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definitions needed to that end.

Definition 44. A Fano G-variety V is GQ-Fano if

(i) V has at worst terminal singularities,

(ii) all G-invariant Weil divisor on V areQ-Cartier (GQ-factorial) and,

(iii) PicG(V) =Z.

Of course all smooth minimal del Pezzo G-surfaces satisfy the above requirements and

so are GQ-Fano.

Definition 45. A GQ-Fano variety V is G-birationally-rigid (G-BR) if

(i) there are no other GQ-Fano varieties G-equivariantly birational to V and,

(ii) there are no G-equivariant birational map from V to a variety U such that there is a

(non-birational) G-equivariant epimorphism ξ : U −→ Z where dim(U ) > dim(Z ) 6= 0

and whose general fibre is an irreducible rationally connected variety.

(In particular, V G-BR ⇒ V non-G-rational).

If in addition to the above we also have that BirG(V) = AutG(V) then we say that V is

G-birationally-super-rigid (G-BSR).

Equivalently via the Nöether-Fano inequality (see [CS08, Theorem 1.26]), a GQ-Fano

variety V is G-BSR if for all G-invariant linear systems M on V that have no fixed components,

the singularities of the log pair (V ,λM) are canonical, where λ ∈Q and KV +λM∼Q 0.

Examples 46.

• A smooth del PezzoA5-surface of degree 5 isA5-BSR by Lemma 48.

• P2 is A5-BR but not A5-BSR as A5
∼= AutA5

(
P2

)
( BirA5

(
P2

)∼= S5 (see [Che09, Theo-

rem B.12]).

• Let G be trivial and X quartic three-fold with nodal singularities (ordinary double

points) such that the rank of the class group of X is one (which happens if |Sing(X )| É 8).

Then X is BR and X is BSR if X is smooth ([IM71, Puk88, Cor00, Mel04]).
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Further details can be found in, for example, Cheltsov’s survey ‘Birationally rigid Fano

varieties’ ([Che05]); [Che09, Appendix A]; or [Cor00].

The following result is an equivariant version of [Puk05, Theorem 1] (cf. [CS08, Theorem

1.28], [Che09, Theorem A.29]).

Theorem 47. For 1 É i É r with r Ê 2, let V1, . . . ,Vr be Gi -weakly-exceptional Gi -BSR GiQ-

Fano varieties. Write Γ=G1 ×·· ·×Gr and Ω=V1 × . . .×Vr .

Then the Γ-variety Ω is non-Γ-rational,

BirΓ(Ω) = AutΓ(Ω)

and for every Γ-equivariant rational dominant map

ρ : Ω 99KΨ,

whose general fibre is an irreducible rationally connected variety, there is a commutative

diagram

Ω

π
��

ρ

++WWWWWWWWWWWWWWW

Vi1 × . . .×Vik ψ
//____________ Ψ

for some {i1, . . . , ik } ⊆ {1, . . . ,r }, where ψ is a
(
Gi1 × . . .×Gik

)
-equivariant birational map, and π

a natural projection.

To apply the preceding theorem with Observation 24 and our classification of smooth

minimal G-weakly-exceptional del Pezzo G-surfaces (Theorem 35) we must determine which

of those G-weakly-exceptional minimal del Pezzo G-surfaces are G-BSR.

Lemma 48 (c.f. [Che05, Theorem 1.5.1], [DI10, Corollary 7.11], [Che09, Lemma A.19]). Let S

be a smooth del Pezzo G-surface of degree d = K 2
S such that PicG(S) =Z, if for every G-orbit Σ

on S

|Σ| Ê d ,

then S is G-BSR.
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Proof. Suppose that S is not G-BSR. Then there is a G-invariant linear system M with no

fixed curves but (S,λM) is not canonical at some point P ∈ S, where λ ∈Q and KS +λM∼Q 0.

Let Σ be the G-orbit of P , then for all Q ∈Σ,

multQ (M) > 1

λ

and hence
1

λ
K 2

S = M1 ·M2 Ê
∑

Q∈Σ
mult2

Q (M) > 1

λ
|Σ| Ê 1

λ
K 2

S ,

for M1, M2 sufficiently general curves in M.

Corollary 49.

• All minimal degree one smooth del Pezzo G-surfaces are G-BSR.

• All minimal degree two smooth del Pezzo G-surfaces are G-BSR, whenever G acts without

fixed points (these are also G-weakly-exceptional by Lemma 28).

• Let S be a del Pezzo surface of degree five. Then
(
S,A5

)
is minimal by [DI10] and S isA5-

BSR since for allA5-orbits Σ on S, |Σ| Ê 6. Indeed, if |Σ| < 6 then by the Orbit-Stabiliser

theorem |Σ| = 5 asA5 acts without fixed points and has no subgroups of orders 30,20 or

15. Let H ÉA5 be the stabiliser of some point P ∈Σ, which acts faithfully on the tangent

space of the point P. It follows that |H | = 12 and so H ∼= A4 — butA4 does not have any

faithful two-dimensional representations.

•
(
P2,A6

)
is minimal by [DI10] and P2 is A6-BSR since |Σ| Ê 12 for all G-orbits Σ on P2

([Spr77, YY93]).

It would be interesting to complete the list of those G-weakly-exceptional minimal del

Pezzo G-surfaces that are G-BSR.

Example 50 ([Che09, Lemma A.31]). The simple groupA6 is a group of automorphisms of

the sextic

10x3 y3 +9zx5 +9z y5 +27z6 = 45x2 y2z2 +135x y z4 ⊂P2∼= Proj
(
C[x, y, z]

)



4. Applications of Main Results 27

which induces an embeddingA6 É Aut(P2) such that lct
(
P2,A6

)= 2 by Proposition 34, and

A6 ×A6 acts naturally on P2 ×P2. There is an induced embedding A6 ×A6
∼= ΩÉ Bir(P4)∼=

Cr4(C) such thatΩ is not conjugated to a subgroup of Aut(P4) by Example 48 and Theorem 47.

4.2 Existence of Kähler-Einstein metrics and convergence of the

Kähler-Ricci iteration

On Fano manifolds, global log canonical thresholds play an important role in determining

the existence of Kähler-Einstein metrics, that is Kähler metrics whose Ricci curvature is

proportional to the metric tensor. They are also significant in determining the convergence

of the Kähler-Ricci flow and Kähler-Ricci iteration.

Let V be a smooth Fano G-variety, with G finite.

Definition 51. A Kähler metric g = g
i j

on V with associated Kähler form

ω=
p−1

2π

∑
g

i j
d zi ∧d z j ∈ c1(V )

is Kähler-Einstein if Ricci(ω) =ω, where Ricci(ω) is the Ricci curvature of the metric g .

The following theorem is proved in [DK01], [Nad90], [Tia87] and [CS08, Appendix A].

Theorem 52. If

lct
(
V ,G

)> dim(V )

dim(V )+1
,

then V admits a G-invariant Kähler-Einstein metric.

The problem of the existence of Kähler-Einstein metrics on smooth del Pezzo surfaces is

completely solved by [Tia90b].

Theorem 53. Let X be a smooth del Pezzo surface, then the following are equivalent:

• X admits a Kähler-Einstein metric.

• X is not the blowup of P2 in one or two points.
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• Aut(X) is reductive.

Definition 54. The normalised Kähler-Ricci flow on V is defined by the following equations:

∂ω(t )

∂t
=−Ricci

(
ω(t)

)+ω(t); ω(0) =ω, (4.1)

where ω(t ) is a Kähler form on V such that ω(t ) ∈ c1(V ) and t is a non-negative real number.

Cao proved in [Cao85] that solutions ω(t ) exist for all t > 0.

Suppose that V admits a Kähler-Einstein metric with a Kähler form ωKE. The following

theorem is due to [Nad90] and [TZ07].

Theorem 55. Any solution to the normalised Kähler-Ricci flow (4.1) converges to ωKE in the

sense of Cheeger-Gromov.

Let G be a finite subgroup of Aut(V), for smooth Fano manifold V . Suppose now that the

initial metric g is G-invariant. This guarantees, by the uniqueness of the solutions to the PDE

(4.1) in the definition of the normalised Kähler-Ricci flow, that all the metrics along the flow

will also be invariant and so we can reformulate Theorem 55 as follows (cf. [Rub09, San08]).

Theorem 56. If

lct
(
V ,G

)> dim(V )

dim(V )+1
.

Then the normalised Kähler-Ricci flow (4.1) converges in the C∞(V )-topology to ωKE.

Definition 57. The normalised Kähler-Ricci iteration on V is defined by the equations:

ωn = Ricci(ωn+1); ω0 =ω (4.2)

where ω is a Kähler form such that ω ∈ c1(V ).

In Yau’s paper [Yau78] he shows that there exist solutions ωn to the normalised Kähler-

Ricci iteration (4.2) for all n Ê 1.

Starting with a G-invariant Kähler-Einstein metric with associated Kähler form ωKE on a

Fano manifold V we have the following condition for smooth convergence due to [Rub07].
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Theorem 58. Any solution to the Kähler-Ricci iteration (4.2) converges to ωKE in the C∞(V )-

topology whenever V is G-strongly-exceptional.

4.3 Exceptional Quotient Singularities

A quotient singularity,
(
V 3 P

)
is the quotient of Cn by a finite subgroup G of GLn(C). Let

C[U ] be the co-ordinate ring of the variety U . Consider the sub-algebra of invariants of

G , C[U ]G =
{

f ∈C[U ]
∣∣∣g f = f

}
, which is finitely generated over C (see e.g. [SR94, Appendix

Section 4]). Thus there exists an affine algebraic variety V such that C[V ] = C[U ]G and we

call this the quotient variety, writing V =U
/

G .

Example 59. By Kawamata ([Kaw88]), we know that quotient singularities in dimension two

are precisely Kawamata log terminal (cf. Example 4).

An element g ∈ G É GLn(C) is called a quasi-reflection if we may diagonalise its corre-

sponding matrix to diag(ε,1, . . . ,1); for example, the symmetric group Sn acting on Cn by

permutation of the co-ordinates. There is a famous theorem of the 1950s by Chevalley and

Shephard-Todd, which states that the ring of invariants of a finite group acting on a complex

vector space is a polynomial ring if and only if the group is generated by quasi-reflections,

which is another way of saying that a quotient variety V =U /G is non-singular if and only

if G is generated by quasi-reflections. For any G , the quasi-reflections generate a normal

subgroup N . By considering the quotient group G/N acting on Cn/N ∼= Cn we may assume

that G contains no quasi-reflections.

Definition 60 (cf. [Sho00, Definition 1.5], [MP99a, Definition 2.5]). Let
(
P ∈V

)
be a normal

singularity and let∆=∑
δi∆i be a boundary on V , that is∆ is effective and all the coefficients

δi are less than one. Suppose that
(
V ,∆

)
is log canonical, then the pair

(
V ,∆

)
is exceptional

if there exists at most one exceptional divisor E over V with discrepancy −1 with respect to(
V ,∆

)
. We say that

(
V 3 P

)
is exceptional if the pair

(
V ,∆

)
is for all possible ∆, where

(
V ,∆

)
is

log canonical (see [CS09, Thm 3.16] for the equivalence of this with that of Definition 26).

Markushevich and Prokhorov in the articles [MP99b, MP99a, Pro00], give necessary and

sufficient conditions in terms of semi-invariants of the group for quotient singularities in



30 4.3. Exceptional Quotient Singularities

dimensions three to be exceptional. This extends a similar result of Shokurov in [Sho00] on

two-dimensional quotients.

For a finite subgroup G of GLn(C), a function f ∈C[x1, . . . , xn] is a semi-invariant of G if

there exists a homomorphism χ : G −→C∗ such that g · f =χ(g ) f for all g ∈G . If χ= 1, then

f is an invariant of G ([Spr77, Definition 4.3.1]).

Theorem 61 (Shokurov [MP99a, Proposition 1.1]). A two-dimensional quotient singularity

V = C2
/

G by a finite group without reflections is exceptional if, and only if, G has no semi-

invariants of degree less than or equal to two.

Theorem 62 ([MP99a, Theorem 1.2]). A three-dimensional quotient singularity V =C3
/

G by

a finite group without reflections is exceptional if, and only if, G has no semi-invariants of

degree less than or equal to three.

Furthermore, Markushevich and Prokhorov use the Miller-Blichfeldt-Dickson classifi-

cation of finite subgroups of GL3(C) ([BDM16]) to give a complete list of such subgroups

yielding an exceptional quotient singularity. Recently, Sakovics in [Sak10] extended these

results classifying also those weakly-exceptional
(
P2,G

)
, G É PGL3(C). We present these

results in Section 6.9. Observe that exceptionality imposes strong restrictions on the group G .

Definition 63. Let G ÉGLn(C) be a finite subgroup.

• G is reducible (or the action of G on Cn is intransitive), if there exists a proper invariant

subspace W ⊂Cn , i.e. such that g ·W =W for all g ∈G . Otherwise G is irreducible (or

we say that the action of G on Cn is transitive, i.e. the action has just one orbit).

• We call G imprimitive (of type (mk )) if there exists a non-trivial decomposition Cn =⊕k
i Wi with dim(Wi ) = m such that g ·Wi =W j for any g ∈G . Otherwise G is primitive.

• We have the inclusions
{
primitive

}⊆ {
irreducible & imprimitive

}⊆ {
irreducible

}
.

Let
(
V 3O

)
be the quotient of

(
Cn 3 0

)
by a finite subgroup G ÉGLn(C) without reflections.

Proposition 64 ([MP99b, Corollary 2.3]). If
(
V 3O

)
is exceptional, then G is primitive.

Since it is known that the number of primitive subgroups of GLn(C) is limited up to

conjugations and additions of scalar matrices, it follows from this that there are only finitely



4. Applications of Main Results 31

many groups G , up to conjugations and additions of scalar matrices, such that the quotient

singularity Cn
/

G is exceptional ([Pro00, Theorem 1.1]).

Proposition 65 ([MP99a, Proposition 3.6]). If G is reducible, then
(
V 3 O

)
is not weakly-

exceptional.

Example 66 ([Pro00, Example 3.1]). Let ΓÉSL2(C) be a binary icosahedral group. Consider

the subgroup

G =


A 0

0 B

 ∣∣∣ A,B ∈ Γ
ÉSL4(C).

Then the singularity C4
/

G is non-exceptional as the representation G ,→SL4(C) is reducible.

However, the ring of invariants can be represented in the form

C[x1, x2, y1, y2]G ∼= C[x1, x2]Γ⊗C[y1, y2]Γ.

Since Γ has no semi-invariants of degree less than or equal to twelve (see [Spr77, 4.5.5]),

it follows the same holds true for G . Thus we need to look for something extra to extend

Theorem 62 in higher dimensions.

Let π :GLn+1(C) −→PGLn(C)∼= Aut(Pn) be the natural projection. We have the following

conjecture — a special case of Conjecture 16. Indeed, if there exists a divisor realising the

global log canonical threshold then the notions of exceptional and strongly-exceptional

coincide.

Conjecture 67 ([CS09, Conjecture 1.23]). The quotient singularity Cn+1
/

G is exceptional if,

and only if, lct
(
Pn ,π(G)

)> 1. That is, if and only if, the pair
(
Pn ,π(G)

)
is strongly-exceptional.

Lemma 68. Suppose that G ÉGLn+1(C) has a semi-invariant of degree d, then it follows from

the definition that

lct
(
Pn ,π(G)

)É d

n +1
.

Definition 69. Let (V 3O) be a germ of a Kawamata log terminal singularity, and letπ : W −→
V be a birational morphism such that the following hypotheses are satisfied:

• the exceptional locus of π consists of one irreducible divisor E ⊂W such that O ∈π(E ),
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• the log pair (W,E) has purely log terminal (plt) singularities (see Definition 2),

• the divisor −E is a π-ampleQ-Cartier divisor.

Then we say π : W −→V is a plt blowup.

Definition 70.
(
V 3O

)
is weakly-exceptional if it has unique plt blow up.

Weakly-exceptional Kawamata log terminal singularities do exist (see [Kud01, Exam-

ple 2.2]).

Theorem 71 ([CS09, Theorem 3.15]). The quotient singularity Cn+1
/

G is weakly-exceptional

if, and only if, lct
(
Pn ,π(G)

)Ê 1.

Thus, we see that notions of weakly-exceptional quotient singularity and of weakly-

exceptional pairs
(
Pn ,π(G)

)
agree here and the corresponding statement to Conjecture 67

is true for weak-exceptionality. Cheltsov and Shramov go further and prove the above con-

jecture for P2 with this extension of Theorem 62 and a corresponding statement for weak-

exceptionality.

Theorem 72 ([CS09, Theorem 3.17]). The following are equivalent:

•
(
V 3 P

)=C3
/

G is exceptional,

• G has no semi-invariants of degree less than or equal to three,

• lct
(
P2,π(G)

)Ê 4
3 .

Theorem 73 ([CS09, Theorem 3.18]). For a three dimensional quotient singularity
(
V 3 0

)
the

following are equivalent:

• the inequality lct
(
P2,π(G)

)Ê 1 holds,

• the group G does not have semi-invariants of degree at most two.

Cheltsov-Shramov extended Theorem 72 to six-dimensional quotient singularities with

the following.

Theorem 74 ([CS10, Thm 1.12]). If n É 5, then following are equivalent:
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•
(
V 3 P

)=Cn+1
/

G is exceptional,

• G is primitive and has no semi-invariants of degree less than or equal to n +1,

• lct
(
Pn ,π(G)

)Ê n+1
n .

To answer completely our Question B for P2 it remains to identify those finite groups π(G)

such that
(
P2,π(G)

)
is weakly-exceptional. That is, we should identify those finite groups

G É GL3(C) on the list of Miller-Blichfeldt-Dickson, but not on that of Markushevich and

Prokhorov (Proposition 204), who do not have semi-invariants of degree at most two. In fact,

this was recently done by Sakovics in [Sak10].

Remark 75. The above discussion shows the link between pairs
(
P2,G

)
and exceptional

quotient singularities, it would be interesting — but we suspect hard — to understand the

link with other del Pezzo pairs
(
S,G

)
.
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Chapter 5
Preliminaries

We present here notations used in this thesis and collect together the tools for the following

Chapter. Again, we re-iterate that throughout, unless otherwise stated, all varieties are assumed

to be normal, projective, algebraic and defined over the field of complex numbers.

5.1 Del Pezzo Surfaces

A del Pezzo surface S is an irreducible surface whose anti-canonical divisor is ample — that

is a Fano variety of dimension two. We define the degree dS of S to be the self-intersection of

the anti-canonical class, i.e. dS = K 2
S (Definition 19).

5.1.1 Classification of del Pezzo surfaces

Proposition 76 ([Bla06, Proposition 4.1.3]; cf. [Dem80, KSC04, Kol96, Man66]). Let S be a

rational surface, then the following are equivalent:

(i) S is a del Pezzo surface;

(ii) S∼= P2,P1 ×P1, or the blow up of 1 É r = 9−dS É 8 points of P2 in general position (that

is — no three collinear, no six on the same conic, and no eight lie in a cubic having a

double point at one of them);
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(iii) K 2
S Ê 1 and any irreducible curve of S has self-intersection Ê−1;

(iv) C · (−KS) > 0 for all effective divisors C on S.

Proof. (i ⇒ iv) As −KS is ample, some multiple of it, m > 0 say, is very ample. The map

corresponding to−mKS gives us an embedding; −mKS ·C is the degree of C in this embedding,

which is necessarily positive.

(iv ⇒ iii) Suppose that some irreducible curve C of S has self-intersection É−2. The adjunc-

tion formula ([Bea96, I.15]) gives C ·(C+KS
)=−2+2·pa(C ) Ê−2, whence C ·(−KS) É 2+C 2 É 0,

which contradicts assertion (iv).

(iv ⇒ ii) S is a rational surface such that (iv) and (iii) hold. Applying the MMP to S by blowing

down some (−1)-curves on S, we get a birational morphism to a surface T isomorphic to

the projective plane P2 or to some Hirzebruch surface Fn with n 6= 1 (see Proposition 17).

Observe that no curve on T has self-intersection less than −1 as no curve on S does. As any

Hirzebruch surface Fn has a unique curve of self-intersection −n, n É 1 — that is T ∼= P2 or

P1 ×P1. If S = T then we are done, otherwise without loss of generality (since the blowup

of P1 ×P1 is isomorphic to the blowup of P2 in two distinct points) we may suppose that

T ∼= P2. Thus, S is the blowup of the projective plane in some number of points in general

position and all of these points lie in P2. Indeed, if any of the points are infinitely near or not

in general position then there would exist a curve on S with self-intersection less than −1. To

show (iv) ⇒ (ii); suppose that S is the blowup of P2 in nine or more points, then there exist

conics on P2 passing through any nine of these points, which are all irreducible as the points

are in general position. Take one of them and observe that its strict transform on S intersects

the anti-canonical divisor of S non-positively.

(iii ⇒ ii) Using the above proof of (iv ⇒ ii), we see that S is P2, P1 ×P1, or the blowup of P2

in one or more points in general position. Using the formula for the blowup, it is easy to see

that K 2
S Ê 1 implies that the number of points must be less than 9.

(ii ⇒ i) In [Dem80], Theorem 1, it is proved that the blow-up of 1 É r É 8 points in general

position gives a del Pezzo surface. The cases of P2 and P1 ×P1 are clear.
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Proposition 77 (Anti-canonical Models [KSC04, Theorem 3.36]). Let S be a del Pezzo surface.

For:

(i) K 2
S = 1, S is isomorphic to a hypersurface of degree six in the weighted projective space

P(1,1,2,3).

(ii) K 2
S = 2, S is isomorphic to a hypersurface of degree four in the weighted projective space

P(1,1,1,2).

(iii) K 2
S = 3, S is isomorphic to a cubic surface in P3.

(iv) K 2
S = 4, S is isomorphic to the complete intersection of two quadrics in P4.

Further details can be found in, for example, [Dem80, KSC04, Kol96, Man66].

5.1.2 Lines on del Pezzo surfaces

Clearly the Picard group (the group of all divisors modulo numerical equivalence) on P2 is

generated by the class of a general line L. For π : Sd −→ P2, the blowup of P2 in r = 9−d

points P1, . . . ,Pr in general position, Sd is a del Pezzo surface of degree d as seen above. It is

easy to see that the Picard group of Sd , Pic(Sd), is generated by the strict transform of L and

the 9−d exceptional curves E1, . . . ,Er where π(Er ) = Pr . Furthermore, the anti-canonical

class can be written as −KS =−3π∗(L)+∑9−d
r=1 Er .

For d > 2, the anti-canonical map

ϕ|−KS | : Sd ,→Pd

embeds Sd in Pd — hence the image of a (−1)-curve is a line. Thus, it is natural to refer

to (−1)-curves on Sd as lines (for d = 1,2 we do not call (−1)-curves lines). To enumerate

the number of these lines or (−1)-curves on Sd is relatively simple process — they are the

exceptional curves E1, . . . ,Er and the strict transforms of the curves of degree δ passing

through the P1, . . . ,Pr .

For 9−d É 4, that is for d Ê 6, the (−1)-curves are given by the 9−d exceptional divisors
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E1, . . . ,Er and the strict transforms of the lines 〈Pi P j 〉 between the blowup points. This gives

(9−d)+
(

9−d

2

)
(5.1)

lines on Sd . For 9−d Ê 5, we have in addition to (5.1), the strict transform of the
(9−d

5

)
conics

passing through five points on P2. When 9−d = 7, we add in the seven cubics with a node

at some point Pk . For 9−d = 8; we add 2
(8

6

)
cubics with a node at some point,

(8
3

)
quartics

with nodes at three distinct points,
(8

2

)
quintics with nodes at all but two points and eight

sextics with nodes at all points except one where the sextic has a multiplicity three. This can

be summed up in Tables 5.1 and 5.2, the first of which we take from [Bla06, Proposition 4.2.2].

9−d degree multiplicities number of such curves for
δ at the points 9−d = 1, 2, 3, 4, 5, 6, 7, 8

Ê 2 1 (1,1) 1 3 6 10 15 21 28
Ê 5 2 (1,1,1,1,1) 1 6 21 56
Ê 7 3 (2,1,1,1,1,1,1) 7 56

8 4 (2,2,2,1,1,1,1,1) 56
8 5 (2,2,2,2,2,2,1,1) 28
8 6 (3,2,2,2,2,2,2,2) 8

Table 5.1: Lines on del Pezzo surfaces.

degree of Sd , d 9 8 7 6 5 4 3 2 1
9−d 0 1 2 3 4 5 6 7 8

no. of (−1)-curves 0 1 3 6 10 16 27 56 240

Table 5.2: Number of (−1)-curves on del Pezzo surfaces Sd of degree d .

5.1.3 Automorphism groups of del Pezzo surfaces

As our main objects of study here are smooth del Pezzo G-surfaces S, we should say something

about the possibilities for the group G that acts regularly on S. Letπ : Sd −→P2 be the blow up

of P2 in the points P1, . . . ,Pr in general position for 0 É r É 8, then Sd is a del Pezzo surface of

degree d = 9−r . Our first observation is that Aut(S) acts on the Picard lattice Pic(S)∼= ZrkPic(S)

generated by the strict transform of the class of a line on P2 and the exceptional divisors

E1, . . . ,Er — sending in particular (−1)-curves to (−1)-curves. If r Ê 4, then it follows that

Aut(S) is finite. For r É 3 there are, in addition, projective transformations ofP2 permuting the

points P1, . . . ,Pr that lift to Sd that do not occur for r Ê 4 as all quadrilaterals are projectively
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similar in P2. Thus for r Ê 4, that is for d É 5, we have the following Lemma.

Lemma 78. Let Sd be a smooth del Pezzo surface of degree d then for d É 5, Aut(Sd) is finite.

For larger degree del Pezzo surfaces we discuss their automorphism groups at the begin-

ning of the relevant sections.

In order to answer our Question C, we need first a classification of the possible finite

automorphism groups G of smooth del Pezzo G-surfaces such that the pair
(
S,G

)
is minimal.

This work was completed in [DI10] (see their introduction for an account of the history of the

problem), from which we take the list of possibilities for G . Also worth mentioning are the

works [Hos96, Hos02, Hos97] and [Koi88]. The papers of Hosoh examine computationally

the automorphism groups of cubic and quartic del Pezzo surfaces. In [Koi88], Koitabashi

gives the automorphism group of a generic rational surface of rank r +1 — that is, rational

surfaces S that are the blowups of P2 in r points in general position. From Proposition 76, if

r É 8 then S is a del Pezzo surface. We include the main result of [Koi88] below.

Proposition 79 ([Koi88]). Let k be an algebraically closed field of arbitrary characteristic and

S the blow-up of P2 in points P1, . . . ,Pr in general position. Then the group Autk(S) is given in

Table 5.3, where the notation PGL3(k;P1, . . . ,Pi ) denotes the subgroup of PGL3(k) that fixes

the points P1, . . . ,Pi .

r 0 1 2 3
Autk(S) PGL3(k) PGL3(k;P1) PGL3(k;P1,P2) PGL3(k;P1,P2,P3)oZ2

r 4 5 6 7 8 9 É r
Autk(S) S5 Z4

2

{
id

}
Z2 Z2

{
id

}
Table 5.3: Automorphism groups of generic rational surfaces of rank r +1.

5.1.4 Del Pezzo surfaces of degrees one and two

As we saw above in Proposition 79, del Pezzo surfaces of degrees one and two have natural

involutions defined on them — these are the Bertini and Geiser involutions, respectively.

From Proposition 77, we see that there are natural maps associated with the respective
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anti-canonical linear systems

P(1,1,2,3) ⊃ S1
2:1−→P(1,1,2)

and

P(1,1,1,2) ⊃ S2
2:1−→P2,

where Sd is a del Pezzo surface of degree d . The Bertini involution on S1 and the Geiser

involution on S2 can be viewed as the involutions associated with the interchanging of the

sheets of the double cover of P(1,1,2) or P2 respectively.

Remark 80. Let S be a smooth del Pezzo surface of degree one or two and let τ be the Bertini

or Geiser involution, respectively. Then since curves in |−KS | are invariant under τ, for any

effectiveQ-divisor ∆≡−KS on S where LCS
(
S,∆

)
is zero-dimensional, the points of LCS

(
S,∆

)
are fixed under the action of τ. That is points of LCS

(
S,∆

)
belong to the ramification curve of

the double cover.

In Section 6.1, we require the following technical results on the Bertini involution. Let S1

be a smooth del Pezzo surface of degree one with automorphism group G , C an element of

|−K S1 |. Let

σ : X −→ S1

be the blowup of S1 at the point P ∈C with exceptional divisor over P , E . Let β be the Bertini

involution lifted to S1 and write C , P , etc. for the strict transforms of C and P , respectively.

Lemma 81. The action of β ∈G lifted upstairs onto X acts on E with exactly two fixed points.

Proof. Let x, y, z, t be weighted homogeneous coordinates of weights 1,1,2,3, respectively.

Locally on S1 ⊂Px,y,z,t (1,1,2,3), we may write the equation of the curve C as t 2 = x. On one

chart of the blow-up the pullback of this curve is given by

σ∗
({

t 2 −x = 0
})= {

t ′ = x ′}
(σ∗ sends t 7→ t ′ and x 7→ t ′x ′). Now, writing β for the involution β lifted on X , βmaps t 7→ −t

and so β sends t ′ 7→ −t ′ and x ′ 7→ −x ′. Thus there are exactly two fixed points (0,1) and
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(1,0).

Lemma 82. For λ ∈ Q, let D ≡ −K S1 be a G-invariant effective Q-divisor. Suppose that

LCS
(
S1,λD

)
is zero-dimensional and

(
S1,λD

)
is not log canonical at the point P ∈ S1. Then

there exists a point Q ∈ E such that
(
X ,λD + (multPλD −1)E

)
is not log canonical at Q and

there are less than λ points in the G-orbit of Q.

Proof. By taking the log pull-back of the pair
(
S1,λD

)
, we see that the pair

(
X ,λD + (multpλD −1)E

)
is not log canonical at some point Q. By adjunction, it follows that the pair

(
E ,λD|E

)
is not

log canonical at the point Q. Hence multQλD|E > 1. Moreover, the following inequality holds

∑
multQ jλD|E > J

where the sum is taken over all J points Q j that form the G-orbit of Q = Q0. Since D|E =
(multP D)P and multP D É 1 we have that J < λ∑

multQ j P , which yields the required result

on noting that
∑

multQ j P is zero when Q j 6= P and one otherwise.

5.1.5 Some results on cubic surfaces

The following two results we use later in some calculations on cubic surfaces (Section 6.3.3).

Let S3 be a smooth del Pezzo surface of degree three, that is, a smooth cubic surface.

Definition 83. An Eckardt point is a point on S3 where three lines intersect.

Remark 84. A cubic surface may have up to a maximum of eighteen Eckardt points.

Proposition 85 ([Dol10, Cubic Surfaces Chapter]). There is a bijective correspondence between

Eckardt points on S3 and automorphisms of order 2 with one isolated fixed point.

Proof. [⇒] Let P ∈ S3 be an Eckardt point, with lines L1,L2,L3 3 P and consider the blowup

π : S2 −→ S3 at the point P depicted in Figure 5.1, with exceptional divisor E . The surface S2
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is del Pezzo of degree two and the pre-image of |−KS3 −P | is the anti-canonical linear system

|−KS2 |. The strict transforms Li of the (−1)-curves Li are of course (−2)-curves on S2.

The anti-canonical map f|−KS2 | : S2 −→P2 is a double cover of the projective plane with

ramification divisor R. The images f (Li ) of the strict transforms of the lines Li must be

singular points of the ramification divisor R (abusing notation we write R for both the

ramification divisor on S2 and its image on P2) as the Li are (−2)-curves. The image of the

exceptional curve f (E) is a line on P2 passing through three singular points of R — a quartic

curve. Thus, f (E) is an irreducible component of R and hence R = f (E)+C where C is an

irreducible cubic intersecting f (E) at the three singular points A1, A2, A3.

L3

S2

P2S3

X

f (E)
A3

A2
A1

CL1

L2

L3

P

π
f|−KS2 |

ψ
E

L2

L3

Figure 5.1: Eckardt points on a cubic and involutions with one isolated fixed point.

Let X be the double cover of the blowup of P2 at the three points Ak , ramified along

the strict transform of the curve R. Then there exists a birational map ψ : S2 99K X which is

regular outside of the locus ∪3
i Li . We may extend ψ to a map regular on the whole of S2 by

mapping the Li to the pre-images of the points Ak under the map f : S2 −→ P2. It follows

that ψ : S2 −→ X is a finite map of degree two and hence a Galois cover. Corresponding

to this Galois cover there is an automorphism of S2 (involution) that leaves E point-wise

invariant — thus descending to an involution, g , on S3. Since it leaves |−KS3 | invariant, it

must be induced by a linear projective transformation g of P3. The fixed points of g in P3 is

the point P and a plane Π such that Π∩S3 = Ĉ , where the linear projection from P maps Ĉ
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isomorphically to C .

[⇐]Suppose that g is an involution of S3 with one isolated fixed point. Then g is induced by

an automorphism g of P3. We diagonalise the action of g on C4 and find that its Eigenspace

has Eigen-subspaces of dimensions one and three. It follows that g fixes a point P and a plane

Π, on S3 g fixes the point P and a plane cubic curve, Π∩S3 = Ĉ 3 P . Let Σ be the tangent

plane to S3 at the point P . Then Σ is invariant and its intersection with S3 is a plane cubic

curve Σ∩S3 = D . As both D and Ĉ are numerically equivalent to the anti-canonical divisor

they intersect in three smooth points, which are fixed as Ĉ is. The only possibility is for D

to be the sum of three lines, hence P is an Eckardt point. Indeed, if D is irreducible then its

normalisation is isomorphic to P1 which only has two fixed points for any involution. If D is

the product of a line and a conic then one component must have three fixed points including

P which is impossible as before.

Proposition 86 ([Dol10, Cubic Surfaces Chapter]). No more than two Eckardt points lie on a

line contained in the cubic surface S3.

Proof. Let S3 be a smooth cubic surface with two Eckardt points P1,P2 that lie on some line

L and consider the linear projection

ϕ : S3
2:1−→P2

from the point P1. The ramification curve consists of the line L and a cubic curve C , where C

is the locus of all points on S3 such that the lines joining them to P1 are tangent to S3. Writing

Q for ϕ(P2), it is easy to see that Q belongs to ϕ(L)∩ϕ(C ). The point P2 belongs to the fixed

curve of the involution g corresponding to the Eckardt point P1 and the image of the plane

tri-tangent to S3 at P2 is a line on P2 intersecting ϕ(C ) at only one point. Thus, the point Q

must be a point of inflection for ϕ(C ) and it follows that there cannot be another Eckardt

point on the line L.
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5.2 Nadel Vanishing and Corollaries

5.2.1 Locus of log canonical singularities and multiplier ideals

For the convenience of the reader, we include several definitions from [CS08, Section 2]. Fur-

ther details on these can be found there, or in [Laz04, Book II]. Let V be aQ-factorial variety

with no worse than klt singularities and consider an effectiveQ-divisor∆V =∑r
i=1δi∆i , where

the ∆i are distinct prime Weil divisors on the variety V and let π : U −→ V be a birational

morphism, such that U is smooth. Write

∆U =
r∑

i=1
δi∆i ,

where ∆i is a proper transform of the divisor ∆i on the variety U . Then

KU +∆U ∼Q π∗
(
KV +∆V

)
+

n∑
i=1

ai Ei ,

where ai = a(Ei ;V ,∆) ∈Q is the discrepancy of Ei with respect to
(
V ,∆

)
, and Ei is an excep-

tional divisor of the morphism π. Suppose that

(
r⋃

i=1
∆i

)⋃(
n⋃

i=1
Ei

)

is a divisor with simple normal crossing — that is π is a log resolution of
(
V ,∆

)
.

Recall (Definition 2) that the singularities of
(
V ,∆V

)
are log canonical (resp., log terminal)

if

• the inequality δi É 1 holds (resp., the inequality δi < 1 holds),

• the inequality a j Ê−1 holds (resp., the inequality a j >−1 holds),

for every i = 1, . . . ,r and j = 1, . . . ,n.

Definition 87 ([CS08, Definition 2.1]). The locus of log canonical singularities of the log pair(
V ,∆V

)
is the set

LCS
(
V,∆V

)
=

( ⋃
δiÊ1

∆i

)⋃( ⋃
aiÉ−1

π
(
Ei

))
(V
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Definition 88 ([CS08, Definition 2.2]). A proper irreducible sub-variety W (V is said to be a

centre of log canonical singularities of the log pair
(
V ,∆V

)
if one of the following conditions is

satisfied:

• either the inequality δi Ê 1 holds and W =∆i ,

• or the inequality ai É−1 holds and W =π(Ei ) for some choice of the birational mor-

phism π : U −→V .

Let LCS
(
V ,∆V

)
be the set of all centres of log canonical singularities of

(
V ,∆V

)
. Then

W ∈ LCS
(
V ,∆V

)
=⇒W ⊆ LCS

(
V,∆V

)

and LCS
(
V ,∆V

)=∅⇐⇒ LCS
(
V,∆V

)=∅⇐⇒ the log pair
(
V ,∆V

)
is log terminal.

Lemma 89 ([CS08, Remark 2.3]). Let X be a variety with log terminal singularities with

effective Q-divisor ∆, let H be a linear system on X with no base points and let H ∈ H be a

sufficiently general divisor. For a proper irreducible sub-variety Y ( X , with

Y |H =
m∑

i=1
Zi

where the Zi ⊂ H are irreducible subvarieties, it follows from the definition of LCS (Defini-

tion 88) that

Y ∈ LCS(
X ,∆

)⇐⇒ {
Z1, . . . , Zm

} ∈ LCS(
H ,∆|H

)
.

The locus LCS
(
V,∆V

)⊂ V can be equipped with a scheme structure (see [Nad90], [Sho93]).

Put

I
(
V ,∆V

)
=π∗OU

( n∑
i=1

dai eEi −
r∑

i=1
bδi c∆i

)
,

and let L
(
V ,∆V

)
be a sub-scheme that corresponds to the ideal sheaf I

(
V ,∆V

)
.

Definition 90 ([CS08, Definition 2.5]; cf. [Laz04, Definition 9.2.1]). For the log pair
(
V ,∆V

)
,

we say that

• the sub-scheme L
(
V ,∆V

)
is the sub-scheme of log canonical singularities of

(
V ,∆V

)
,

• the ideal sheaf I
(
V ,∆V

)
is the multiplier ideal sheaf of

(
V ,∆V

)
.
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It follows from the construction of the sub-scheme L
(
V ,∆V

)
that

Supp
(
L

(
V ,∆V

))= LCS
(
V ,∆V

)⊂V.

5.2.2 Nadel vanishing

Theorem 91 (Nadel Vanishing). Let V be smooth projective variety; ∆, H Q-divisors on V with

H nef and big and L a Z-divisor on V such that L ∼Q KV +∆+H. Then

H i
(
V ,OV (L)⊗I

(
V ,∆

))= 0 for i > 0.

Proof. See [Laz04, Theorem 9.4.8].

Theorem 92 (Shokurov Connectedness). Let V be smooth projective variety; ∆, H Q-divisors

on V with H nef and big and L a Z-divisor on V such that L ∼Q KV +∆+H.

Suppose that −(
KV +∆)

is nef and big, then LCS
(
V,∆

)
is connected.

Proof. Take L = 0, then we have the following exact sequence

0 −→ I
(
V ,∆

)⊗OV −→OV −→OL(V ,∆) −→ 0

where L
(
V ,∆

)
is the sub-scheme associated with the multiplier ideal sheaf I

(
V ,∆

)
. The

corresponding exact sequence of cohomology groups is

C∼= H 0(V ,OV
)−→ H 0

(
L

(
V ,∆

)
,OL(V ,∆)

)
−→ H 1

(
V ,I

(
V ,∆

)⊗OV )
)
= 0

Thus, LCS
(
V,∆

)= Supp
(
L

(
V,∆

))
is connected.

Corollary 93. Let V be smooth projective variety; ∆, H Q-divisors on V with H nef and big

and L a Z-divisor on V such that L ∼Q KV +∆+H.

Suppose that LCS
(
V,∆

)
is zero dimensional. Then LCS

(
V,∆

)
consists of at most k points,

where k is the dimension of H 0
(
V ,OV (L)

)
.
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Proof. By Nadel Vanishing (Theorem 91), H i
(
V ,OV (L)⊗I

(
V ,∆

))= 0 for i > 0. We have the

following short exact sequence

0 −→ I
(
V ,∆

)⊗OV (L) −→OV (L) −→OL(V ,∆)(L) −→ 0

where L
(
V ,∆

)
is the sub-scheme associated with the multiplier ideal sheaf I

(
V ,∆

)
. Together

these yield the following exact sequence

Ck ∼= H 0(V ,OV (L)
)−→ H 0

(
L

(
V ,∆

)
,OL(V ,∆)(L)

)
−→ H 1

(
V ,I

(
V ,∆

)⊗OV (L)
)
= 0

That is to say, the following map is surjective

Ck −→ H 0
(
L

(
V ,∆

)
,OL(V ,∆)(L)

)

Hence, LCS
(
V,∆

)= Supp
(
L

(
V,∆

))
consists of at most k points.

5.2.3 Corollaries on del Pezzo surfaces

Corollary 94. Let X be a smooth del Pezzo surface, λ Ê 0, D ∼Q −KX an effective Q-divisor

on X such that
(
X ,λD

)
is not klt and LCS

(
X,λD

)
is zero dimensional. Then the points of

LCS
(
X,λD

)
impose independent linear conditions on elements in H 0

(
X ,OX

(− (pλ−1q)KX
))

.

Proof. Let H = (λ−1−pλ−1q)KX and L = KX +λD +H ∼Q −(pλ−1q)KX . Then H is nef and

big, and L is a Z-div on X . Applying Nadel vanishing (Theorem 91) with this H and L shows

that the following map is surjective

H 0
(

X ,OX
(− (pλ−1q)KX

))−→ H 0
(
L

(
X ,λD

)
,OL(X ,λD)

(− (pλ−1q)KX
))

.

Examples 95. With the assumptions of Corollary 94, suppose also that

(i) λ< 1. Then we have the surjective map

C∼= H 0(X ,OX
)−→ H 0

(
L

(
X ,λD

)
,OL(X ,λD)

)
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which implies that LCS
(
X,λD

)
consists of at most one point.

(ii) λ< 2. Then we have the surjective map

CK 2
X +1∼= H 0(X ,OX (−KX )

)−→ H 0
(
L

(
X ,λD

)
,OL(X ,λD)(−KX )

)

which implies that LCS
(
X,λD

)
consists of at most K 2

X +1 points. Furthermore, the

surjectivity of the map also implies that for each point Q in LCS
(
X,λD

)
we may find a

curve in |−KX | that passes through all other points of LCS
(
X,λD

)
except Q.

Lemma 96. Let X be a minimal del Pezzo G-surface of degree n and let λ< ξ, where ξ is the

smallest integer such that |−ξKX |G is non-empty. Suppose that there exists a G-invariant effec-

tiveQ-divisor D =∑r
i=0 di Di ≡−KX such that

(
X ,λD

)
is not log canonical. Then LCS

(
X,λD

)
is zero-dimensional.

Proof. Suppose that LCS
(
X,λD

)
is not zero-dimensional. Then there exist dk such that

λdk > 1. Writing D = dk
(
∆1 + ·· ·+∆k

)+Ω, where ∆1 + ·· ·+∆k is a G-orbit of Dk = ∆k . By

Proposition 18, clearly ∆1 +·· ·+∆k ∈ |−µKX |G for some µ ∈Z>0. However, intersecting λD

with −KX leads to a contradiction.

λn =λD · (−KX ) Êµλdk n >µn

That is, ξ>λ>µ which implies that |−µKX |G =;.

Theorem 97 ([Che08, Lemma 5.1]). Let X be a smooth del Pezzo surface, H a Cartier divisor

on X , G be a finite sub-group of Aut(X) such that PicG(X) =Z and PicG(X) is generated by H.

Furthermore, let ξ be the smallest integer such that |ξH | 6= ;, k the smallest integer such that

k = |Σ| where Σ is a G-orbit on X and let r be the biggest integer such that −KX ∼ r H.

Then

h0
(

X ,OX
(
(ξ− r )H

))< k

implies that

lct
(
X ,G

)= ξ

r
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Proof. Firstly observe that, by definition lct
(
X ,G

) É ξ
r . Suppose, for a contradiction, that

lct
(
X ,G

) < ξ
r . Then there exists λ ∈ Q>0 with λ < ξ

r and a G-invariant effective Q-divisor

D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.

By the proof of Lemma 96, LCS
(
X,λD

)
is zero-dimensional. With notation as above and

writing L for L
(
V ,∆

)
, it follows from Theorem 91 (Nadel Vanishing) that the sequence

H 0
(

X ,OX
(
(ξ− r )H

))→ H 0
(
L,OL⊗OX

(
(ξ− r )H

))→ 0

is exact. However this, in conjunction with the G-invariance of L
(
X ,λD

)
, implies that we

have the following contradictory inequality:

k > h0
(

X ,OX
(
(ξ− r )H

))Êh0
(
L,OL⊗OX

(
(ξ− r )H

))
=h0(L,L

)Ê ∣∣∣Supp
(
L

)∣∣∣= ∣∣∣LCS
(
X,λD

)∣∣∣Ê k.

5.3 Group Theory Notation

Recall the following definitions. Let A and B be groups, then

• A ×B is the direct product of A and B — defined to be the set of ordered pairs (a,b)

(a ∈ A, b ∈ B) with (a,b)(a′,b′) = (aa′,bb′);

• A•B (or AB) is the upward extension of A by B , or the downward extension of B by A —

defined as the group with normal subgroup A, such that the corresponding quotient

group has structure B ;

• AoB (or A : B in [CCN+84]) is the semi-direct product of A and B — defined as special

case of A•B as follows: Given the homomorphism ϕ : B −→ Aut(A) that shows how B

acts by conjugation on A, we define AoB to be all the pairs (b, a) (b ∈ B , a ∈ A) with

(b, a)(b′, a′) = (bb′, aϕ(b′)a′). As a memory aid the symbolo should remind the reader

of the symbol used to denote normal subgroups, as we have A E AoB . Note that AoB

is a split extension A•B ;
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• A•B is a non-split extension A•B .

Definition 98. For a group G , we say elements a,b ∈G are conjugate whenever there exists

an element γ ∈G such that γ−1aγ= b. Conjugacy is an equivalence relation and partitions G

into a number of distinct conjugacy classes. For subgroups E and F of G , E is conjugate to F

in G if there exists η ∈G such that η−1Eη= F .

We use the following group theory notation:

Write

Sn

An

D2n

Zn

GLn(k)

SLn(k)

PGLn(k)

PSLn(k)

Aut(X)

Bir(X)

Crn(k)

Pic(X)



for the



symmetric group on n letters;

alternating group;

dihedral group of order 2n;

integers modulo n (i.e. Z
/
Zn);

general linear group of dimension n over a field k;

special linear group of dimension n over a field k;

projective linear group of dimension n over a field k;

projective special linear group of dimension n over a field k;

group of all regular self-maps on a variety X ;

group of all rational self-maps on a variety X ;

Cremona group of rank n over a field k
(
identical to Bir(Pn

k)
)
;

group of all Cartier divisor classes on X modulo linear equivalence.



Chapter 6
Exceptional del Pezzo Surfaces

In this Chapter we explore the G-exceptionality of smooth del Pezzo G-surfaces by calculating

their global G-invariant log canonical thresholds. These calculations involve examining

explicitly the group structure and equations of such surfaces, providing proof of the results in

Section 3.4. Tables of the global G-invariant log canonical thresholds calculated here can be

found in Chapter 7.

6.1 Degree One

6.1.1 Background

Let X be a smooth del Pezzo surface of degree 1. Then X is a degree six hyper-surface in

the weighted projective space P(1,1,2,3) with homogeneous co-ordinates x, y, z and t of

weights 1,1,2,3 respectively (Proposition 77). The bi-anti-canonical linear system is base

point free and its corresponding map gives X as a double cover of a quadratic cone, Q, in P3.

By completing the square and the cube, we see that any such surface may be given by an

equation of the form

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0

where fk (x, y) is a homogeneous polynomial of degree k in the variables x and y .
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Let G be the group of automorphisms Aut(X) of our surface X , then G is finite by Lemma 78

and always contains the subgroup Z2 generated by the Bertini involution β, that swaps the

sheets of the double cover of the quadratic cone (see Section 5.1.4). Details of the possible

automorphism groups realising minimal pairs
(
X ,G

)
and their corresponding equations and

generators can be found in [DI10].

Remarks 99.

• Observe that if f6(x, y) = 0, then the surface X will be singular. Indeed, if f6(x, y) = 0

then the ramification divisor of the double cover ofP(1,1,2) is given by z
(
z2+ f4(x, y)

)=
0.

• By similar reasoning; if a common root of f4 and f6 is a multiple root of f6, then X will

be singular.

6.1.2 General results

We answer here completely our Questions A and C by calculating the global log canonical

thresholds of the G-surfaces
(
X ,G

)
as G runs through all possible minimal automorphism

groups.

Lemma 100. The pluri-anti-canonical linear system |−2KX | contains G-invariant members,

that is, |−2KX |G 6= ;.

Proof. As we remarked above, a del Pezzo surface of degree one is given by the zeros of

t 2 + z3 + z f4(x, y)+ f6(x, y) — we claim this form is canonical (in the sense that if we choose

to write it without a z2 term then the equation is unique). Indeed, if we are to make any non-

trivial change of coordinates sending z to ξz + f2(x, y) for ξ ∈C. Then we introduce a z2 term

back into the equation — completing the square and eliminating this term brings us back

to our original equation. From this canonicity, it follows that for any automorphism g ∈G ,

g (z) = νz for some ν ∈C. Observe then that the divisor D = {
z = 0

}|X = {
t 2 + f6(x, y) = 0

}
is a

G-invariant member of |−2KX |.

Corollary 101. lct
(
X ,G

)É 2 for all possible automorphism groups G.
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From Cheltsov (Theorem 33) we know that

lct
(
X , I

)=


5
6 if |−KX | contains cuspidal curves

1 if |−KX | contains no cuspidal curves

where I is the trivial group.

It follows from this and Corollary 101 above that

5

6
É lct

(
X ,G

)É 2. (6.1)

Lemma 102. Suppose that there exists C ∈ |−KX |G . Then lct
(
X ,G

)= lct1
(
X ,G

)
.

Proof. Observe first that if lct1
(
X ,G

) = 5
6 , then lct

(
X ,G

) = lct1
(
X ,G

)
immediately by Theo-

rem 33. We may assume then that lct1
(
X ,G

)> 5
6 , that is lct1

(
X ,G

)= 1.

Suppose that there exists λ ∈Q such that lct
(
X ,G

)<λ< lct1
(
X ,G

)= 1. Then there exists

a G-invariant effectiveQ-divisor D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.

By Lemma 96, LCS
(
X,λD

)
is zero-dimensional. Set H = (λ−1)KX . Then KX +λD +H ∼Q

L =OX is Cartier and H is nef and big and we may apply Corollary 93. Whence LCS
(
X,λD

)
consists of at most h0(X ,OX ) = 1 point, P .

By Corollary 94, P lies on a curve in the anti-canonical linear system. There are two

possibilities for this point; either P is the base locus Bs
(|−KX|

)
of the anti-canonical linear

system |−KX |, or it lies on an element of |−KX | outside of Bs
(|−KX|

)
. The point P cannot

lie in the base locus, since this would contradict Corollary 94. If it lies on some element

Ω ∈ |−KX | outside this locus, then as P maps to itself under the group action, Ω ∈ |−KX |G .

We may assume that Ω* Supp(D) by Convexity (Lemma 5). However,

1 >λ=λD ·ΩÊλmultP D > 1.

Lemma 103. Suppose that |−KX |G =;. Then lct
(
X ,G

)= lct2
(
X ,G

)
.

Proof. By Lemma 101, | −2KX |G is non-empty. Suppose that there exists λ ∈ Q such that
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lct
(
X ,G

)<λ< lct2
(
X ,G

)É 2. Then there exists a G-invariant effectiveQ-divisor

D =
r∑

i=0
di Di ≡−KX ,

where di ∈Q+ and Di are prime Weil divisors, such that the pair
(
X ,λD

)
is not log canonical.

There are two possibilities for the pair to fail to achieve log canonicity; either some component

Dk of D has large coefficient, or D has a point of high multiplicity.

By Lemma 96, LCS
(
X,λD

)
is zero-dimensional and by Corollary 93 consists of at most

two points.

Suppose LCS
(
X,λD

)
consists of exactly one point. It cannot be the base point of |−KX |,

as this contradicts Corollary 94. However, if the point lies on some element of |−KX | and is

not the base locus, then as it maps to itself under the group action, this element in |−KX |
must be G-invariant — contradicting the fact that |−KX |G is empty.

Hence LCS
(
X,λD

)
consists of two points, P1 and P2 say. By similar arguments, neither P1

nor P2 can be the base point of |−KX | and there is no element C ∈ |−KX | such that P1,P2 ∈C .

P2

P1

C1
C2

Figure 6.1: The two points of LCS
(
X,λD

)
.

Thus, there are distinct curves C1,C2 elements of | −KX | such that P1 ∈ C1, P2 ∈ C2,

P1,P2 ∉ Bs
(|−KX|

)
and C1 +C2 is a G-orbit of C1 — this is shown in Figure 6.1. By Convexity

(Lemma 5), we may assume that C1,C2* Supp(D). Indeed, suppose that C1,C2 ⊆ Supp(D).

Since the group action maps C1 to C2 we see that C1 +C2 ∈ |−2KX |G . Hence
(
X ,λ(C1 +C2)

)
is log canonical. Writing D ≡ ε

(
C1 +C2

)+∆ (C1 and C2 have the same coefficient in D as

they form a G-orbit) we see that ∆ ≡ −(1− 2ε)KX . Intersecting D with −KX we see that

1
2 > ε (Ê 0). The pair

(
X , λ

(1−2ε)∆
)

is log canonical since the points of LCS
(
X,λD

)
* Supp(∆).

However, now
(
X ,λD

)= (
X ,λ(ε(C1 +C2)+∆)

)
is a weighted sum of log canonical pairs. This

contradicts Convexity (Lemma 5). In fact, the same argument shows we may assume that
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Supp(D) doesn’t contain any curve in |−2KX |G .

For i = 1,2, intersecting Ci with D we see that

1 =Ci ·D Ê multPi DmultPi Ci Ê multPi D,

that is multPi D É 1 (of course, we also have that multPi D > 1
λ ).

Let σ : X −→ X be the blow-up of X at the points P1,P2 such that for i = 1,2 σ∗(Pi ) = Ei

are the exceptional divisors. From the equivalence

σ∗(
KX +λD

)≡ K
X
+λD + (

λmultP1 D −1
)
E1 +

(
λmultP2 D −1

)
E2

we see that the pair

(
X ,λD + (

λmultP1 D −1
)
E1 +

(
λmultP2 D −1

)
E2

)

is not log canonical at finitely many points Q1, . . . ,Q j for some j ∈ N. If for i = 1,2 and

1 É k É j , Qk ∈Ci then by intersecting D with Ci and using Remark 11 we obtain

1 < 2

λ
< multQk D +multPi D É 1

— a contradiction. Hence Qk ∉Ci .

C1

X

P2

P1

C1

σ
X

C2

Q2

E2E1

Q1

C2

Figure 6.2: The blow-up of X at the two points of LCS
(
X,λD

)
.

It follows from Lemmata 81 and 82, that j = 2 and Q1 ∈ E1,Q2 ∈ E2, as depicted in



56 6.1. Degree One

Figure 6.2. Since the points Q1,Q2 are unique on E1,E2, respectively then they must be

invariant under the natural Z2-action on X (Bertini involution) and thus belong to the strict

transform of the ramification divisor R ∈ X , this is a smooth curve on X .

Our next observation is that, by Convexity (Lemma 5), we may assume that R * Supp(D).

Considering the intersection of D with R yields

multQ1 D +multQ2 D É D ·R = 3−multP1 D −multP2 D

and as P1 +P2, Q1 +Q2 are two G-orbits we see that multP1 D = multP2 D and multQ1 D =
multQ2 D . Hence,

multQ1 D +multP1 D É 3

2

By Remark 11, we also have that multQ1 D +multP1 D > 2
λ . Thus,

3

2
Ê multQ1 D +multP1 D > 2

λ
(6.2)

Letψ : X
2:1−→Q be the map given by the linear system |−2KX |. That is, a double cover of X

over a quadric cone Q∼= P(1,1,2) ⊆P3 ramified in R , the pre-image of a complete intersection

of Q with a cubic in P3. We construct a unique hyperplane section of Q in the following way;

take the line tangent to ψ(R) at ψ(P1) and form the plane (shown in Figure 6.3) through this

line and the point ψ(P2) — call the intersection curve of this plane with Q the conic ψ(Z1). In

a similar way we may produce a curve ψ(Z2).

ψ Q

ψ(P2)
ψ(P1)

ψ(R)

2 : 1
X

P2

P1

C1
C2

Figure 6.3: Construction of the curve Z1 ⊆ X .
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For i = 1,2, we consider the possibilities for these G-invariant curves upstairs on X :

• Zi =C1 +C2 ∈ |−2KX |G , i.e. ψ(Zi ) are lines on Q;

• Z1 = Z2, Zi ∈ |−2KX |G ;

• Z1 6= Z2, Z1 +Z2 ∈ |−4KX |G .

The first case can only occur when the Ci are tangent to R at the Pi . That is to say the Ci

are singular at the points Pi (for i = 1,2), as ψ is a double cover of Q. We may exclude this

case by observing that as Ci * Supp(D),

2 = (
C1 +C2

) ·D Ê∑
i

multPi Ci multPi D > 4

λ
> 2.

In the second case, where Z1 = Z2 ∈ |−2KX |, we note that Z1 is G-irreducible1 (since

ψ(Z1) is a conic that is not a sum of 2 lines). Thus we may assume that Z1 * Supp(D) by

Convexity (Lemma 5). Since multP1 Z1 = multP2 Z1 = 2 and λ< lct2
(
X ,G

)
we see that

2 = Z1 ·D Ê 2multP1 D +2multP2 D = 4multP1 D > 4

λ
> 2

— a contradiction.

Thus, the only possible case is for Z1 6= Z2, Z1 +Z2 ∈ |−4KX |.

Suppose that
(

X , λ4
(
Z1+Z2

))
is log canonical. Before we noted that multPi D É 1. Observe

that Z1 +Z2 is G-irreducible since Z1 +Z2 is a G-orbit on X , thus by Convexity we may refine

this inequality by intersecting D with Z1 +Z2.

0 É D · (Z1 +Z2
)= 4− (

multP1 D
)(

multP1 (Z1 +Z2)
)− (

multP2 D
)(

multP2 (Z1 +Z2)
)

= 4−3
(
multP1 D +multP2 D

)
that is

multP1 D = multP2 D É 2

3
. (6.3)

To derive our contradiction we’ll consider the blow-up of X at the points Qi . Let π : X̃ −→
1A G-invariant curve C on a G-variety V is G-irreducible if C =∑r

i=0 Ci where the Ci are irreducible and belong
to a single G-orbit.
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X be this blow-up, with exceptional divisors Fi over Qi — as in Figure 6.4. We may apply the

same arguments to X̃ as we did to X , drawing the following conclusions:

C1

Ẽ1 Ẽ2

C̃1
C̃2

X̃ X

C2

Q2

E2E1

Q1

F2
F1

A2A1

π

Figure 6.4: The blow-up of the points Q1,Q2 on X .

• By considering the log pull-back under π

π∗
(
K

X
+λD + (

λmultP1 D −1
)
E1 +

(
λmultP2 D −1

)
E2

)
≡

K X̃ +λD̃ +∑2
i=1

(
λmultPi D −1

)
Ẽi +∑2

i=1

(
λmultQi D +λmultPi D −2

)
Fi

we see that the pair

(
X̃ ,λD̃ +

2∑
i=1

(λmultPi D −1)Ẽi +
2∑

i=1
(λmultQi D +λmultPi D −2)Fi

)
= (

X̃ ,Ξ
)

is not log canonical at a finite number of points A1, . . . , Aq since for i = 1,2,

λmultQi D +λmultPi D −2

λmultPi D −1

É 1.

Moreover, by Lemmata 81 and 82, there is exactly one point A1, A2 on each of F1,F2,

respectively and the natural Z2-action (Bertini involution) lifted on X̃ has two fixed

points on each Fi — the points Ai and Q̃i for i = 1,2.

• By using adjunction, we see that any G-orbit of the point A1 (or A2) consists of at most
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these two points.

Let i = 1,2, as before there are two possibilities for the Ai ; either Ai = Ẽi ∩Fi , or Ai ∈ R̃.

Suppose that Ai = Ẽi ∩Fi .

Then as the pair
(
X̃ ,Ξ

)
is not log canonical at the point Ai , by adjunction neither is the

pair (
Ẽi ,λD̃|Ẽi

+ (λmultQi D +λmultPi D −2)Fi |Ẽi

)
.

Hence (
λD̃ + (λmultQi D +λmultPi D −2)Fi

) · Ẽi > 1

which implies that

multPi D > 3

4

since D̃ · Ẽi = multPi D −multQi D — contradicting inequality (6.3): multPi D É 2
3 .

Now A1, A2 ∈ R̃ and since the pair
(
X̃ ,Ξ

)
is not log canonical at the points A1, A2 we have

may re-write inequality (6.2) as

multAi D̃ +multPi D +multQi D − 2

λ
> 1

λ
,

that is

multAi D̃ > 3

λ
−multPi D −multQi D. (6.4)

Intersecting R̃ with D̃ we find a contradiction

3− (multP1 D +multP2 D +multQ1 D +multQ2 D) = R̃ · D̃

Ê multA1 D̃ +multA2 D̃

> 2(
3

λ
−multP1 D −multQ1 D)

and since λ< 2 we have

3 > 6

λ
> 3.

Thus our only possible escape from contradiction is for the pair
(

X , λ4
(
Z1 +Z2

))
to not be

log canonical. Suppose then that
(

X , λ4
(
Z1 +Z2

))
is not log canonical.
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We may run our arguments for the divisor D again for DS = 1
4

(
Z1 +Z2

)
. We encounter no

problems up to, and including, equation (6.2). Namely, we have that multP1 DS = multP2 DS ;

multQ1 DS = multQ2 DS and

3

2
Ê multQ1 DS +multP1 DS > 2

λ
> 1. (6.5)

Since multP1

(
Z1 +Z2

)= 3, multP1 DS = 3
4 and together with equation (6.5) we find that

3

4
Ê multQ1 DS > 1

4
.

Hence multQ1 DS = 2
4 or 3

4 . However, multQ1

(
Z1+Z2

)= 0,1 or 2. Therefore, multQ1 DS = 2
4 = 1

2 .

Now that we have obtained values for multP1 DS and multQ1 DS replacing inequality (6.3),

we continue by blowing up at the points Q1,Q2 as before. This leads to a contradiction on

intersecting R̃ with D̃S . Indeed,

1

2
= 3− (

2multP1 DS +2multQ1 DS
)

= R̃ · D̃S

Ê multA1 D̃S +multA2 D̃S

> 2

λ

> 1.
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Theorem 104. Let X be a general2 smooth minimal del Pezzo G-surface of degree one with

the prescribed automorphism group G, then

lct
(
X ,Aut(X)

)=



1 if Aut(X) =Z2,

1 if Aut(X) =Z2 ×Z2,

1 if Aut(X) =Z4,

1 if Aut(X) =Z6,

1 if Aut(X) =Z4 ×Z2,

5
6 if Aut(X) =Z8,

5
6 if Aut(X) =Z10,

1 if Aut(X) =Z2 ×Z6,

5
6 if Aut(X) =Z12,

5
6 if Aut(X) =Z20,

1 if Aut(X) =Z2 ×Z12,

5
6 if Aut(X) =Z24,

5
6 if Aut(X) =Z30,

2 if Aut(X) =D8,

2 if Aut(X) =Z2•D4,

2 if Aut(X) =D12,

5
3 if Aut(X) =D16,

2 if Aut(X) =Z2•D12,

2 if Aut(X) =Z2•A4,

5
3 if Aut(X) =Z3 ×D8,

2 if Aut(X) =Z2 ×Z3•D6,

2 if Aut(X) =Z6•D12,

5
3 if Aut(X) =Z3 ×Z2•S4.

The following theorem lists the group-invariant global log canonical thresholds for special

cases of smooth del Pezzo surfaces of degree one.

2The required generality is made explicit in restrictions on the parameters of the defining equations of X —
that is ‘general’ means not on the list of Theorem 105.
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Theorem 105. Let X be a smooth minimal del Pezzo G-surface of degree one, then

lct
(
X ,Aut(X)

)=



5
6 if Aut(X) =Z2 and |−KX |G contains cusps;

5
6 if Aut(X) =Z4 and X can be described by the zeros of

t 2 + z3 + z
(
ax4 +bx2 y2 + c y4

)+x y
(
d x4 +ex2 y2 + f y4

)
with either a = 0 or c = 0 (but not a = c = 0 and d = f concurrently);

5
3 if Aut(X) =D8 and X can be described by the zeros of

t 2 + z3 +bzx2 y2 +x y
(
c
(
x4 + y4

)+d x2 y2
)

with c 6= 0 and d 6= 0;

5
6 if Aut(X) =Z2•D4 and X can be described by the zeros of

t 2 + z3 + z
(
a
(
x4 + y4

)+bx2 y2
)
+x y

(
x4 − y4

)
with a = 0 or 2(1+εk

4 )+ε2k
4 b = 0;

5
3 if Aut(X) =Z2•D4 and X can be described by the zeros of

t 2 + z3 + z
(
a
(
x4 + y4

)+bx2 y2
)
+x y

(
x4 − y4

)
with 2a ±b = 0.

Remark 106. It is not clear whether all the possiblities of Theorem 105 actually occur or not.

For example, in the case when G =D8 (Section 6.1.3.14) the surface X is given by the zeros of

t 2 + z3 + z
(
a(x4 + y4)+bx2 y2

)+x y
(
c(x4 + y4)+d x2 y2

)
. If a = 0 then the surface can contain

cuspidal curves in | −2KX |G whilst being non-singular. It is not clear however if with this

choice of a we allow more automorphisms and causing the size of Aut(X) = G to jump.

6.1.3 Results for individual automorphism groups

Let X be a smooth minimal del Pezzo G-surface of degree one such that G = Aut(X) and

x, y, z, t be homogeneous coordinates on P(1,1,2,3) with weights 1,1,2,3, respectively. De-

note the automorphism ϕ : X −→ X mapping

(x : y : z : t ) 7→ (
ϕ(x) :ϕ(y) :ϕ(z) :ϕ(t )

)
by

[
ϕ(x),ϕ(y),ϕ(z),ϕ(t )

]
,

let εk = e
2πi

k be the kth primitive root of unity and write β for the natural Z2-action (Bertini

involution) [x, y, z,−t ]. All notations are described in detail in Chapter 5.
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6.1.3.1 Aut(X) =Z2

Lemma 107.

lct
(
X ,Z2

)=


5
6 if |−KX | contains cuspidal curves,

1 if |−KX | contains no cuspidal curves.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) and f6(x, y) general such that Aut(X) is no bigger than Z2.

Generator of Aut(X ) (Bertini involution):

β= [x, y, z,−t ].

Proof of Lemma 107. As the automorphism group of any smooth del Pezzo surface of degree

one contains Z2 as a subgroup (cf. Proposition 79), it follows that lct
(
X ,Z2

)= lct
(
X , I

)
, where

I is the trivial group.

6.1.3.2 Aut(X) =Z2 ×Z2

Lemma 108.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax4 +bx2 y2 + c y4 and f6(x, y) = d x6 +ex4 y2 + f x2 y4 + g y6.

Generators of Aut(X ):

β, g = [x,−y, z, t ].
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Generality conditions Observe that if either g = c = 0, or a = d = 0 then, by Remark 99, we

contradict the smoothness of X .

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the following two G-invariant curves

C1 = {x = 0}|X = {t 2 + z3 + c y4z + g y6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z +d x6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Observe that C1 has singular points at
(
0 : 1 : ±

√
−c
3 : 0

)
, whenever 3g ±4c

√
−c
3 = 0.

These are nodal unless c = 0, whence they are cuspidal. Similarly, C2 has singular points(
1 : 0 : ±

√
−a
3 : 0

)
with 3d ±4a

√
−a
3 = 0 that are nodal unless a = 0, whence they are cuspidal.

Neither of these cuspidal cases may occur due to the generality conditions above.

6.1.3.3 Aut(X) =Z4

Lemma 109.

lct
(
X ,G

)= lct1
(
X ,G

)=



5
6 if a = 0 and c 6= 0,

5
6 if a = 0 and d 6= f ,

5
6 if c = 0 and a 6= 0,

5
6 if c = 0 and d 6= f ,

1 otherwise.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,
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with f4(x, y) = ax4 +bx2 y2 + c y4 and f6(x, y) = x y(d x4 +ex2 y2 + f y4).

Generator of Aut(X ):

g = [x,−y,−z, i t ].

Generality conditions If a = 0, c = 0 and d = f then we have an extra automorphism of X .

Indeed, if a = c = 0 then f4 has two double roots at (0,1) and (1,0). Any proper symmetry

preserving this set must swap these roots, that is send (x, y) 7→ (y, x). However, this will not

leave invariant the roots of f6 unless d = f .

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 + c y4z = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)=



5
6 if a = 0 and c 6= 0,

5
6 if a = 0 and d 6= f ,

5
6 if c = 0 and a 6= 0,

5
6 if c = 0 and d 6= f ,

1 otherwise.

Proof. By inspection, Ci ∈ |−KX |G are smooth curves for a,c 6= 0 and cuspidal otherwise.

From the generality conditions, we require that a = 0, c = 0 and d = f don’t occur concurrently.

6.1.3.4 Aut(X) =Z6

Lemma 110.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.
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Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0.

There are three cases, as Z6 can belong to three different conjugacy classes:

(i) f4(x, y) = x(ax3 +by3) and f6(x, y) = cx6 +d x3 y3 +e y6.

Generator of Aut(X ):

g = [x,ε3 y, z,−t ].

Generality conditions Observe that if either e = 0, or a = c = 0 then (by Remark 99)

we contradict the smoothness of X .

Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 +e y6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z + cx6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Both curves Ci ∈ |−KX |G are smooth, taking into consideration the generality

conditions above.

(ii) f4(x, y) = x2 y2 and f6(x, y) = ax6 +bx3 y3 + c y6.

Generator of Aut(X ):

g = [x,ε3 y,ε3z,−t ].

Generality conditions Observe that if either a = 0, or c = 0 then (by Remark 99) we

contradict the smoothness of X .
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Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 + c y6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Both curves Ci ∈ |−KX |G are smooth, taking into consideration the generality

conditions above.

(iii) f4(x, y) = 0 and f6(x, y) = ax6 +bx5 y + cx4 y2 +d x3 y3 + ex2 y4 + f x y5 + g y6 such that

f6 is without multiple roots.

Generator of Aut(X ):

g = [x, y,ε3z,−t ].

Generality conditions Observe that for g = 0 (resp. a = 0), if f = 0 (resp. b = 0) then

f6(x, y) has multiple roots. However, f 6= 0 (resp. b 6= 0) then the ramification divisor of

the double cover of a quadratic cone by X is singular. Hence both g and a are non-zero.

Action of G on |−KX | By Lemma 30 and Remark 31 the entire anti-canonical linear system

is G-invariant, that is

|−KX |G = {λx +µy = 0}|X .

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.
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Proof. Invariant curves in |−KX | are given by

C(λ:µ) = {λx +µy}|X ,

for (λ :µ) ∈P1. As the equation for X is symmetric in x and y , we need consider only the case

where µ 6= 0;µ= 1. Thus the curves Cλ are given by the zero locus of equations

t 2 + z3 +x6(a +bλ+ cλ2 +dλ3 +eλ4 + f λ5 + gλ6).

We see that for a 6= 0, there are no values of λ for which the curve Cλ is singular. Hence for

a 6= 0 (and g 6= 0 by taking λ 6= 0) the claim follows; we may make these assumptions by the

generality conditions above.

6.1.3.5 Aut(X) =Z4 ×Z2

Lemma 111.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax4 +by4 and f6(x, y) = x2(cx4 +d y4).

Generators of Aut(X ):

g = [i x, y,−z, i t ],β.

Generality conditions Observe that either b must be non-zero, or a and c must be non-

zero. Indeed suppose that either b = 0, or a = c = 0, then by Remark 99, we contradict the

smoothness of X .
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Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 +by4z = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z + cx6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Notice that C1 is cuspidal when b = 0 and smooth otherwise. C2 has singular points at(
1 : 0 : ±

√
−a
3 : 0

)
when 3c ±2a

√
−a
3 = 0. At these points the curve is cuspidal when a = 0 and

nodal otherwise.

6.1.3.6 Aut(X) =Z8

Lemma 112.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax2 y2 and f6(x, y) = x y(cx4 +d y4).

Generator of Aut(X ):

g = [x, y,−i z,−ε8t ].

Action of G on |−KX | By Lemma 30 and Remark 31 the entire anti-canonical linear system

is G-invariant, that is

|−KX |G = {λx +µy = 0}|X .
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Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. Invariant curves in |−KX | are given by

C(λ:µ) = {λx +µy}|X ,

for (λ :µ) ∈P1. As the equation for X is symmetric in x and y , we may consider only the case

where µ 6= 0;µ= 1. Thus the curves Cλ are given by the zero locus of equations

t 2 + z3 +λ(
λax4z +x6(c +dλ2)

)
and taking λ= 0 we see that the anti-canonical linear system contains cusps.

6.1.3.7 Aut(X) =Z10

Lemma 113.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax4 and f6(x, y) = x(bx5 + y5).

Generator of Aut(X ):

g = [x,ε5 y, z,−t ].
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Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z +bx6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. By inspection, the curve C1 is cuspidal.

6.1.3.8 Aut(X) =Z2 ×Z6

Lemma 114.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0.

There are three cases, corresponding to three possible conjugacy classes:

(i) with f4(x, y) = x4 and f6(x, y) = ax6 +by6.

Generator of Aut(X ):

g = [x,ε6 y, z, t ].

Generality conditions Observe that b must be non-zero; indeed, if b = 0 then (by

Remark 99) this contradicts the smoothness of X .
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Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 +by6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +x4z +ax6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. The curve C1 is non-singular unless b = 0, whence it is a cusp. C2 is non-singular

unless 3a ± 2i
p

3
3 = 0, whence it is nodal.

(ii) with f4(x, y) = x2 y2 and f6(x, y) = ax6 +by6.

Generators of Aut(X ):

g = [ε6x, y,ε2
3z, t ],β.

Generality conditions Observe that a and b must be non-zero; indeed, if a = 0 or

b = 0 then (by Remark 99) this contradicts the smoothness of X .

Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 +by6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Both curves C1,C2 ∈ |−KX |G are smooth, taking into consideration the generality

conditions.
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(iii) with f4(x, y) = 0 and f6(x, y) = d x6 +ex4 y2 + f x2 y4 + g y6.

Generator of Aut(X ):

g = [−x, y,ε3z, t ].

Generality conditions Observe that if g = 0 or d = 0 then the ramification divisor of

the double cover of the quadratic cone in P3 is singular, contradiction the smoothness

of X .

Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 + g y6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +d x6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Both curves C1,C2 ∈ |−KX |G are smooth, taking into consideration the generality

conditions.

6.1.3.9 Aut(X) =Z12

Lemma 115.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x y(x4 +ax2 y2 +by4).
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Generator of Aut(X ):

g = [−x, y,ε6z, i t ].

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 = 0},

C2 = {y = 0}|X = {t 2 + z3 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. By inspection, both C1 and C2 are cusps.

6.1.3.10 Aut(X) =Z20

Lemma 116.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax4 and f6(x, y) = x y5.

Generator of Aut(X ):

g = [x,ε10 y,−z, i t ].
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Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 = 0},

C2 = {y = 0}|X = {t 2 + z3 +ax4z = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. By inspection, the curve C1 is a cusp.

6.1.3.11 Aut(X) =Z2 ×Z12

Lemma 117.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = x4 and f6(x, y) = y6.

Generators of Aut(X ):

g = [ε12x, y,ε2
3z,−t ],β.

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 + y6 = 0},

C2 = {y = 0}|X = {t 2 + z3 +x4z = 0}.
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Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. Both the curves C1 and C2 are smooth members of |−KX |G .

6.1.3.12 Aut(X) =Z24

Lemma 118.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x y(x4 +by4).

Generator of Aut(X ):

g = [i x, y,ε12z,ε8t ].

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 = 0},

C2 = {y = 0}|X = {t 2 + z3 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. By inspection, both the curves C1 and C2 are cuspidal.
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6.1.3.13 Aut(X) =Z30

Lemma 119.

lct
(
X ,G

)= lct1
(
X ,G

)= 5

6
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x(x5 + y5).

Generator of Aut(X ):

g = [x,ε5 y,ε3z,−t ].

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains two G-invariant curves, namely

C1 = {x = 0}|X = {t 2 + z3 = 0},

C2 = {y = 0}|X = {t 2 + z3 +x6 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 5

6
.

Proof. By inspection, C1 is cuspidal and C2 is non-singular.

6.1.3.14 Aut(X) =D8

Lemma 120.

lct
(
X ,G

)= lct2
(
X ,G

)=


5
3 if a = 0 (and c,d 6= 0),

2 otherwise.
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Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = a(x4 + y4)+bx2 y2 and f6(x, y) = x y
(
c(x4 + y4)+d x2 y2

)
.

Generators of Aut(X ):

g1 = [y,−x, z, i t ], g2 = [y, x, z, t ].

Generality conditions Observe that if c = d = 0 then f6(x, y) = 0 and by Remark 99 we

contradict the smoothness of X . Furthermore if 2a ±b = 0 and 2c ±d = 0, then (x2 + y2)2

is a shared root of f4 and f6 that is a multiple root of f6 — this contradicts the smoothness

of X (cf. Remarks 99). When a = 0, if c = 0 then X will be singular by Remark 99 since a

shared root of f4 and f6 will be a double root of f6. Further, if a = d = 0 then we allow extra

automorphisms and the group jumps to D16.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. D8 acts on |−KX | = {λx +µy = 0}|X ((λ :µ) ∈P1) yielding a 2-dim representation of D8

on C2. The generators g1 and g2 are given,respectively, by the matrices

A =
 0 1

−1 0

 and B =
0 1

1 0


in this representation. We see that A has Eigenvalues ∓i and corresponding Eigenvectors[

1 ±i
]T

. However

B

 1

±i

=
±i

1


and so there is no common Eigenspace between the generators. Thus the representation is

irreducible, and the claim follows.
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Action of G on |−2KX |

Claim. Let

C1 = {x y = 0}|X = {t 2 + z3 +ax4z = 0},

C2 = {z = 0}|X = {t 2 +x y(c(x4 + y4)+d x2 y2) = 0},

C3 = {x2 + y2 = 0}|X = {t 2 + z3 +x4z(2a −b)±x6i (2c −d) = 0},

C4 = {x2 − y2 = 0}|X = {t 2 + z3 +x4z(2a +b)±x6i (2c +d) = 0}.

Then the G-invariant curves in |−2KX | are C1, C4 and members of the pencil {λC2+µC3 = 0}

for (λ :µ) ∈P1.

Proof. Since for∆ ∈ |−2KX |,∆= {λ0x2+λ1 y2+λ2x y +λ3z = 0}|X for some (λ0 :λ1 :λ2 :λ3) ∈
P3 we see that G acting on |−2KX | yields a 4-dim representation of G onC4 (with co-ordinates

x2, y2, x y and z). The generators g1 and g2 correspond to matrices

Γ1 =



0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 1

 and Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,

respectively. We readily see that these split in to

Γ1 =
0 1

1 0

⊕
[
−1

]
⊕

[
1
]

and Γ2 =
0 1

1 0

⊕
[

1
]
⊕

[
1
]

.

However, the representation splits further as

Γ1 =
[

1
]
⊕

[
−1

]
⊕

[
−1

]
⊕

[
1
]

and Γ2 =
[

1
]
⊕

[
−1

]
⊕

[
1
]
⊕

[
1
]

.

Thus, the representation splits as a sum of irreducible sub-representations asC1⊕C1⊕C1⊕
C1. This gives us four 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X , C2 = {z = 0}|X , C3 = {x2 + y2 = 0}|X and C4 = {x2 − y2 = 0}|X .

Since the curves C2 and C3 are compatible under the action of the group G , linear combi-
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nations of them belong to the linear system |−2KX |.

Observe that the final two curves, C3 and C4, can also be seen as coming from the

following: From the 2-dim representation ofD8 onC2 coming from the action ofD8 on |−KX |,
we see that corresponding to the Eigenvectors of the matrix giving the g1 action we have two

curves, D1 and D2 in |−KX | that are Z4-invariant (Z4 = 〈g1〉). The action of Z2 interchanges

these curves, whence C3 = D1 +D2 ∈ |−2KX |G . Similarly, if we start with the Z2-invariant

curves corresponding to the Eigenvectors of the matrix representation of g2 and then apply

the Z4 action, we find that C4 = D3 +D4.

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)=


5
3 if a = 0,

5
3 if c = 2a −b = 0 and 4i a

p
a(3+ (−1)k )+ (−1)l 3

p
3d 6= 0,

2 otherwise.

Proof. First we examine the curves C1 and C4 and determine how bad their singularities can

be. Then we examine the curves in the pencil {λC2 +µC3 = 0}, for (λ :µ) ∈P1.

(i) C1 = {x y = 0}|X .

Since the equation is symmetric in x and y we may assume without loss of generality

that y = 0. Then C1 is given by the zero locus of t 2 + z3 +ax4z. Clearly if a = 0 then C1

is cuspidal, otherwise C1 is a non-singular curve.

(ii) C4 = {x2 − y2 = 0}|X = {t 2 + z3 +x4z(2a +b)±x6(2c +d) = 0}.

In a similar way, we calculate for C4 that whenever ±4(2a +b)
√

−(2a+b)
3 ±6(2c +d) = 0

the curve has singular points at (1 : ±1 : ±
√

−(2a+b)
3 : 0) which are nodal unless 2a+b = 0

— whence these points are cusps.

(iii) {λC2 +µC3 = 0}|X = {λz +µ(x2 + y2) = 0}|X .



6. Exceptional del Pezzo Surfaces 81

Suppose that λ 6= 0;λ=−1, then for a curve F in this pencil we may write

F =
{

t 2 +x6(µ(µ2 +a)
)+ cx5 y +x4 y2(µ(3µ2 +a +b)

)+d x3 y3

+x2 y4(µ(3µ2 +a +b)
)+ cx y5 + y6(µ(µ2 +a)

)= 0
}

.

For F to have singularities worse than nodes, we must have that

µ(µ2 +a) = 0

c = 0

µ(3µ2 +a +b) = 0


that is either

c = 2a −b = 0,

or

c =µ= 0.

The case c = µ= 0 is a special case of the curve C2, which we examine below. When

c = 2a −b = 0, the curve F is given by the zeros of the polynomial t 2 +d x3 y3. For

4i a
p

a(3+ (−1)k )+ (−1)l 3
p

3d = 0,

the surface will be singular — a contradiction.

Thus F has cuspidal points when c = 2a −b = 0 and 4i a
p

a(3+ (−1)k )+ (−1)l 3
p

3d 6= 0.

The only curves remaining to check are C2 and C3.

(iv) C3 = {x2 + y2 = 0}|X = {t 2 + z3 +x4z(2a −b)±x6i (2c −d) = 0}.

Here we calculate that the curve has singular points at (1 : ±i : ±
√

−(2a−b)
3 : 0) whenever

±4(2a−b)
√

−(2a−b)
3 ±6i (2c−d) = 0 which are nodal if 2a−b 6= 0 and cuspidal otherwise.

(v) C2 = {z = 0}|X = {t 2 +x y(c(x4 + y4)+d x2 y2) = 0}.

For 2c ± d 6= 0, C2 is a non-singular curve. Otherwise, we have singular points at

(1 : εk
4 : 0 : 0) which are nodal unless c = d = 0, whence they are cusps.
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6.1.3.15 Aut(X) =Z2•D4

Lemma 121.

lct
(
X ,G

)=


5
6 if a = 0,

5
6 if 2(1+εk

4 )+ε2k
4 b = 0,

5
3 if 2a ±b = 0,

2 otherwise.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = a(x4 + y4)+bx2 y2 and f6(x, y) = x y(x4 − y4).

Generators of Aut(X ):

g1 = [x,−y,−z, i t ], g2 = [y, x,−z, i t ].

Generality conditions Each of the conditions a = 0, 2(1+εk
4 )+ε2k

4 b = 0 and 2a ±b = 0 are

possible without enlarging the size of the group, that is allowing extra automorphisms. In

the case where a = 0, the equation is isomorphic to that of a del Pezzo of degree one with

automorphism group D16 however this isomorphism is not Z2•D4-equivariant.

Action of G on |−KX |

Claim. |−KX |G =;, unless either a = 0 or 2(1+εk
4 )+ε2k

4 b = 0 (whence there is a cusp in the

G-invariant anti-canonical linear system).

Proof. First observe that if either a = 0 or 2(1+εk
4 )+ε2k

4 b = 0, then there is a cuspidal curve

in the anti-canonical linear system.

G acts on |−KX | = {λx +µy = 0}|X for (λ :µ) ∈P1, yielding a 2-dim representation of G on
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C2. The generators g1 and g2 are given,respectively, by the matrices

Γ1 =
1 0

0 −1

 and Γ2 =
0 1

1 0


in this representation. We see that Γ2 exchanges the Eigenvectors of Γ1. Thus there is no

common Eigenspace between the generators. Therefore the representation is irreducible,

and the claim follows.

Action of G on |−2KX |

Claim. The following four curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X = {t 2 + z3 +ax4z = 0},

C2 = {z = 0}|X = {t 2 +x y(x4 − y4) = 0},

C3 = {x2 + y2 = 0}|X = {t 2 + z3 +x4z(2a −b) = 0},

C4 = {x2 − y2 = 0}|X = {t 2 + z3 +x4z(2a +b) = 0}.

Proof. Since for∆ ∈ |−2KX |,∆= {λ0x2+λ1 y2+λ2x y +λ3z = 0}|X for some (λ0 :λ1 :λ2 :λ3) ∈
P3 we see that G acting on |−2KX | yields a 4-dim representation of G onC4 (with co-ordinates

x2, y2, x y and z). The generators g1 and g2 correspond to matrices

Γ1 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 and Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

 ,

respectively. We readily see that these split in to

Γ1 =
[

1
]
⊕

[
1
]
⊕

[
−1

]
⊕

[
−1

]
and Γ2 =

0 1

1 0

⊕
[

1
]
⊕

[
−1

]
.

Thus, the representation splits as a sum of irreducible sub-representations asC1⊕C1⊕C1⊕
C1. This gives us four 1-dimensional irreducible subspaces corresponding to the G-invariant
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curves C1 = {x y = 0}|X , C2 = {cz = 0}|X , C3 = {x2 + y2 = 0}|X and C4 = {x2 − y2 = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)=


5
3 if a = 0,

5
3 if 2a ±b = 0,

2 otherwise.

Proof. We examine each of the curves C1,C2,C3,C4 in turn and determine how bad their

singularities can be.

(i) C1 = {x y = 0}|X .

We may assume without loss of generality that y = 0. Then C1 is given by the zero locus

of t 2 + z3 +ax4z. Clearly if a = 0 then C1 is cuspidal, otherwise C1 is a non-singular

curve.

(ii) C2 = {z = 0}|X = {t 2 +x y(x4 − y4) = 0}.

This curve has nodal singularities at the points (1 : εk
4 : 0 : 0).

(iii) C3 = {x2 + y2 = 0}|X = {t 2 + z3 +x4z(2a −b) = 0}.

Unless 2a −b = 0, C3 is a smooth curve. When it is non-singular it is cuspidal.

(iv) C4 = {x2 − y2 = 0}|X = {t 2 + z3 +x4z(2a +b) = 0}.

As for C3: When 2a +b = 0 C4 is cuspidal, otherwise it is smooth.

6.1.3.16 Aut(X) =D12

Lemma 122.

lct
(
X ,G

)= lct1
(
X ,G

)= 2.

Equation of surface and group action



6. Exceptional del Pezzo Surfaces 85

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax2 y2 and f6(x, y) = x6 + y6 +bx3 y3.

Generators of Aut(X ):

g1 = [x,ε3 y,ε3z,−t ], g2 = [y, x, z, t ].

Generality conditions First observe that if a = 0, then the automorphism group of X jumps

size to Z2 ×Z3•D6. Moreover, if a = b = 0 then Aut(X) =Z6•D12.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. First observe that if a = 0, then the automorphism group of X jumps size to Z2×Z3•D6.

G acts on |−KX | = {λx +µy = 0}|X with (λ :µ) ∈P1, yielding a 2-dim representation of G

on C2. The generators g1 and g2 are given,respectively, by the matrices

Γ1 =
1 0

0 ε3

 and Γ2 =
0 1

1 0


in this representation. We see that Γ2 has Eigenvalues ±1 and corresponding Eigenvectors[

1 ±1
]T

. However

Γ1

 1

±1

=
 1

±ε3

 .

Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following four curves are the only G-invariant members of |−2KX |.
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C1 = {x y = 0}|X = {t 2 + z3 +x6 + y6 = 0},

C2 = {z = 0}|X = {t 2 +x6 + y6 +bx3 y3 = 0},

C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z ±bi x6 = 0},

C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z + (2±b)x6 = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1 and g2 correspond to matrices

Γ1 =



1 0 0 0

0 ε2
3 0 0

0 0 ε3 0

0 0 0 ε3

 and Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,

respectively. We readily see that these split in to

Γ1 =
[

1
]
⊕

[
ε2

3

]
⊕

[
ε3

]
⊕

[
ε3

]
and Γ2 =

0 1

1 0

⊕
[

1
]
⊕

[
1
]

.

Thus, the representation splits as a sum of irreducible sub-representations asC1⊕C1⊕C1⊕
C1. This gives us four 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X , C2 = {z = 0}|X , C3 = {x2 + y2 = 0}|X and C4 = {x2 − y2 = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. We examine each of the curves C1, . . . ,C4 in turn and determine how bad their singu-

larities can be.

(i) C1 = {x y = 0}|X = {t 2 + z3 +x6 + y6 = 0}.

Clearly this is a smooth curve on X .
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(ii) C2 = {z = 0}|X = {t 2 +x6 + y6 +bx3 y3 = 0}.

This curve has nodal singularities at the points (1 : ±1 : 0 : 0).

(iii) C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z ±bi x6 = 0}.

If a = b = 0, C3 is a cuspidal curve. If a and b are related by 4a
√

a
3 ±6bi = 0, then C3

has nodal points at (1 : ±i : ±
√

a
3 : 0). For other values of a and b C3 is non-singular.

(iv) C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z + (2±b)x6 = 0}.

If a = b = 0, C4 is a cuspidal curve. If a and b are related by 6(2±b)± 4ai
√

a
3 = 0,

then C4 has nodal points at (1 : ±1 : ±i
√

a
3 : 0). For other values of a and b C4 is

non-singular.

6.1.3.17 Aut(X) =D16

Lemma 123.

lct
(
X ,G

)= lct2
(
X ,G

)= 5

3
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax2 y2 and f6(x, y) = x y(x4 + y4).

Generators of Aut(X ):

g1 = [ε8x,ε−1
8 y,−z, i t ], g2 = [y, x, z, t ].

Generality conditions Observe that if f4(x, y) = 0 then the automorphism group of X will

jump to Z3 ×Z2•S4, thus we require a 6= 0.

Action of G on |−KX |

Claim. |−KX |G =;.
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Proof. G acts on |−KX | = {λx+µy = 0}|X for some (λ :µ) ∈P1, yielding a 2-dim representation

of G on C2. The generators g1 and g2 are given,respectively, by the matrices

Γ1 =
ε8 0

0 ε−1
8

 and Γ2 =
0 1

1 0


in this representation. We see that Γ2 has Eigenvalues ±1 and corresponding Eigenvectors[

1 ±1
]T

. However

Γ1

 1

±1

=
 ε8

±ε−1
8

 .

Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following four curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X = {t 2 + z3 = 0},

C2 = {z = 0}|X = {t 2 +x y(x4 + y4) = 0},

C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z ±2i x6 = 0},

C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z ±2x6 = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1 and g2 correspond to matrices

Γ1 =



ε2
8 0 0 0

0 ε−2
8 0 0

0 0 1 0

0 0 0 −1

 and Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,
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respectively. We readily see that these split in to

Γ1 =
[
ε2

8

]
⊕

[
ε−2

8

]
⊕

[
1
]
⊕

[
−1

]
and Γ2 =

0 1

1 0

⊕
[

1
]
⊕

[
1
]

.

Thus, the representation splits as a sum of irreducible sub-representations asC1⊕C1⊕C1⊕
C1. This gives us four 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X , C2 = {z = 0}|X , C3 = {x2 + y2 = 0}|X and C4 = {x2 − y2 = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 5

3
.

Proof. We examine each of the curves C1, . . . ,C4 in turn and determine how bad their singu-

larities can be.

(i) C1 = {x y = 0}|X = {t 2 + z3 = 0}.

This is a cuspidal curve on X .

(ii) C2 = {z = 0}|X = {t 2 +x y(x4 + y4) = 0}.

This curve has nodal singularities at the points (1 : εk
4 : 0 : 0).

(iii) C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z ±2i x6 = 0}.

If a =−3εk
3 , then C3 has nodal points at (1 : ±i : ±

√
a
3 : 0). For other values of a C3 is

non-singular.

(iv) C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z +±2x6 = 0}.

If a = 3iεk
3 ,then C4 has nodal points at (1 : ±1 : ±i

√
a
3 : 0). For other values of a C4 is

non-singular.
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6.1.3.18 Aut(X) =Z2•D12

Lemma 124.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = ax2 y2 and f6(x, y) = x6 + y6.

Generators of Aut(X ):

g1 = [x,ε6 y,ε2
3z, t ], g2 = [y, x, z, t ],β.

Generality conditions Observe that if a = 0, then the automorphism group of X will be

Z6•D12. Hence a 6= 0.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. First observe that if a = 0, then the automorphism group of X will be Z6•D12. Hence

a 6= 0.

G acts on |−KX | = {λx +µy = 0}|X with (λ :µ) ∈P1, yielding a 2-dim representation of G

on C2. The generators g1, g2 and β are given,respectively, by the matrices

Γ1 =
1 0

0 ε6

 , Γ2 =
0 1

1 0

 and B = Id

in this representation. We see that Γ2 has Eigenvalues ±1 and corresponding Eigenvectors
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[
1 ±1

]T
. However

Γ1

 1

±1

=
 1

±ε6

 .

Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following four curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X = {t 2 + z3 +x6 = 0},

C2 = {z = 0}|X = {t 2 +x6 + y6 = 0},

C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z −2i x6 = 0},

C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z +2x6 = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1, g2 and β correspond to matrices

Γ1 =



1 0 0 0

0 ε2
6 0 0

0 0 ε6 0

0 0 0 ε2
3

 , Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 and T = Id,

respectively. We readily see that these split in to

Γ1 =
[

1
]
⊕

[
ε2

3

]
⊕

[
ε3

]
⊕

[
ε3

]
and Γ2 =

0 1

1 0

⊕
[

1
]
⊕

[
1
]

.

Thus, the representation splits as a sum of irreducible sub-representations asC1⊕C1⊕C1⊕
C1. This gives us four 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X , C2 = {z = 0}|X , C3 = {x2 + y2 = 0}|X and C4 = {x2 − y2 = 0}|X .



92 6.1. Degree One

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. We examine each of the curves C1, . . . ,C4 in turn and determine how bad their singu-

larities can be.

(i) C1 = {x y = 0}|X = {t 2 + z3 +x6 = 0}

Clearly this is a smooth curve on X .

(ii) C2 = {z = 0}|X = {t 2 +x6 + y6 = 0}.

This curve is non-singular on X .

(iii) C3 = {x2 + y2 = 0}|X = {t 2 + z3 −ax4z = 0}.

If a = 0, C3 is a cuspidal curve — however if a = 0, then we have a smooth curve in

|−KX |G . For non-zero values of a, this is a smooth curve.

(iv) C4 = {x2 − y2 = 0}|X = {t 2 + z3 +ax4z +2x6 = 0}.

If a = 3iεk
3 , then C4 has nodal singularities at the points (1 : ±1 : ±

√
a
3 : 0). For other

values of a and b C4 is non-singular.

6.1.3.19 Aut(X) =Z2•A4

Lemma 125.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action (binar tetrahedron group)

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = x4 +2i
p

3x2 y2 + y4 and f6(x, y) = x y(x4 − y4).
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Generators of Aut(X ):

g1 = [i x,−i y, z, t ], g2 = [i y, i x, z, t ], g3 = [
ε−1

8p
2

(x + y),
ε8p

2
(−x + y),ε3z, t ].

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. G acts on |−KX | = {λx +µy = 0}|X for (λ :µ) ∈P1, yielding a 2-dim representation of

G on C2. The generators g1, g2 are given,respectively, by the matrices

G1 =
i 0

0 −i

 and G2 =
0 i

i 0


in this representation. We see that G2 has Eigenvalues ±i and corresponding Eigenvectors[

1 ±1
]T

. However

G1

 1

±1

=
 i

∓i

 .

Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The only G-invariant member of |−2KX | is

C = {z = 0}|X = {t 2 +x y(x4 − y4) = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates
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x2, y2, x y and z). The generators g1, g2 and g3 correspond, respectively, to matrices

Γ1 =



−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 , Γ2 =



0 −1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 1

 and Γ3 =



−i
2

−i
2 −i 0

i
2

i
2 −i 0

−1
2

1
2 0 0

0 0 0
p

2ε3

 .

We see that the representation splits as a sum of irreducible sub-representations asC3⊕C1.

This corresponds to a unique G-invariant curve in |−2KX |, C = {z = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. By inspection, C is a smooth curve, hence result.

6.1.3.20 Aut(X) =Z3 ×D8

Lemma 126.

lct
(
X ,G

)= lct2
(
X ,G

)= 5

3
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x y(x4 +ax2 y2 + y4).

Here the group acts as it did for D8, the only difference being that we have taken specific

coefficients to allow the automorphism group to enlarge (namely in Section 6.1.3.14; take

a = b = 0,c = 1). Hence we have the following.

Lemma.

lct2
(
X ,G

)= 5

3
.
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6.1.3.21 Aut(X) =Z2 ×Z3•D6

Lemma 127.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x6 +ax3 y3 + y6.

Generators of Aut(X ):

g1 = [x, y,ε3z, t ], g2 = [x,ε3 y, z, t ], g3 = [y, x, z, t ].

Generality conditions Observe that if a = 0, then the automorphism group of X will jump

to Z6•D12. Hence a 6= 0.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. G acts on |−KX | = {λx +µy = 0}|X for (λ :µ) ∈P1, yielding a 2-dim representation of

G on C2. The generators g1, g2 and g3 are given,respectively, by the matrices

Γ1 = Id, Γ2 =
1 0

0 ε3

 and Γ3 =
0 1

1 0


in this representation. We see that Γ3 has Eigenvalues ±1 and corresponding Eigenvectors[

1 ±1
]T

. However

Γ2

 1

±1

=
 1

±ε3

 .
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Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following two curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X ,

C2 = {z = 0}|X = {t 2 +x6 + y6 = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1, g2 and g3 correspond to matrices

Γ1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ε3

 , Γ2 =



1 0 0 0

0 ε2
3 0 0

0 0 1 0

0 0 0 1

 and Γ3 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,

respectively. We readily see that these split into

Γ1 =
[

1
]
⊕

[
1
]
⊕

[
1
]
⊕

[
ε3

]
, Γ2 =

1 0

0 ε2
3

⊕
[

1
]
⊕

[
1
]
= H1 ⊕

[
1
]
⊕

[
1
]

and

Γ3 =
0 1

1 0

⊕
[

1
]
⊕

[
1
]
= H2 ⊕

[
1
]
⊕

[
1
]

.

The matrix H2 has Eigenvalues ±1 and corresponding Eigenvectors
[

1 ±1
]T

. However,

H1

 1

±1

=
 1

±ε2
3

 .

Therefore there is no common Eigenspace between H1 and H2.

Thus, the representation splits as a sum of irreducible sub-representations as C2⊕C1⊕C1.
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This gives us two 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X and C2 = {z = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. We examine each of the curves C1,C2 to find that C1 is non-singular and C2 has nodal

singularities.

6.1.3.22 Aut(X) =Z6•D12

Lemma 128.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,

with f4(x, y) = 0 and f6(x, y) = x6 + y6.

Generators of Aut(X ):

g1 = [x, y,ε3z, t ], g2 = [x,ε6 y, z, t ], g3 = [y, x, z, t ].

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. G acts on |−KX | = {λx +µy = 0}|X with (λ :µ) ∈P1, yielding a 2-dim representation of
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G on C2. The generators g1, g2 and g3 are given,respectively, by the matrices

Γ1 = Id, Γ2 =
1 0

0 ε6

 and Γ3 =
0 1

1 0


in this representation. We see that Γ3 has Eigenvalues ±1 and corresponding Eigenvectors[

1 ±1
]T

. However

Γ2

 1

±1

=
 1

±ε6

 .

Thus there is no common Eigenspace between the generators. Therefore the representation

is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following two curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X ,

C2 = {z = 0}|X = {t 2 +x6 + y6 = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1, g2 and g3 correspond to matrices

Γ1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ε3

 , Γ2 =



1 0 0 0

0 ε3 0 0

0 0 1 0

0 0 0 1

 and Γ3 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 ,
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respectively. We readily see that these split into

Γ1 =
[

1
]
⊕

[
1
]
⊕

[
1
]
⊕

[
ε3

]
, Γ2 =

1 0

0 ε3

⊕
[

1
]
⊕

[
1
]
= H1 ⊕

[
1
]
⊕

[
1
]

and

Γ3 =
0 1

1 0

⊕
[

1
]
⊕

[
1
]
= H2 ⊕

[
1
]
⊕

[
1
]

.

The matrix H2 has Eigenvalues ±1 and corresponding Eigenvectors
[

1 ±1
]T

. However,

H1

 1

±1

=
 1

±ε3

 .

Therefore there is no common Eigenspace between H1 and H2.

Thus, the representation splits as a sum of irreducible sub-representations as C2⊕C1⊕C1.

This gives us two 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X and C2 = {z = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. On examination, we find that both curves C1,C2 are non-singular.

6.1.3.23 Aut(X) =Z3 ×Z2•S4

Lemma 129.

lct
(
X ,G

)= lct2
(
X ,G

)= 5

3
.

Equation of surface and group action

Equation of X :

t 2 + z3 + z f4(x, y)+ f6(x, y) = 0,
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with f4(x, y) = 0 and f6(x, y) = x y(x4 − y4).

Generators of Aut(X ):

g1 = [ε8x,ε−1
8 y,−z, i t ], g2 = [y, x,−z, i t ],

g3 = 1p
2

[ε−1
8 x +ε−1

8 y,ε5
8x +ε8 y,

p
2z,

p
2t ], g4 = [x, y,ε3z, t ].

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. G acts on |−KX | = {λx +µy = 0}|X with (λ :µ) ∈P1, yielding a 2-dim representation of

G on C2. The generators g1 and g2 are given,respectively, by the matrices

Γ1 =
ε8 0

0 ε−1
8

 and Γ2 =
0 1

1 0


in this representation. We see that Γ2 has Eigenvalues ±1 and corresponding Eigenvectors[

1 ±1
]T

. However

Γ1

 1

±1

=
 ε8

±ε−1
8

 .

Thus there is no common Eigenspace between even these two generators. Therefore the

representation is irreducible, and the claim follows.

Action of G on |−2KX |

Claim. The following two curves are the only G-invariant members of |−2KX |.

C1 = {x y = 0}|X = {t 2 + z3 = 0},

C2 = {z = 0}|X = {t 2 +x y(x4 − y4) = 0}.

Proof. Since for ∆ ∈ |−2KX |, ∆= {λ0x2 +λ1 y2 +λ2x y +λ3z = 0}|X with (λ0 :λ1 :λ2 :λ3) ∈P3,

we see that G acting on |−2KX | yields a 4-dim representation of G on C4 (with co-ordinates

x2, y2, x y and z). The generators g1, g2, g3 and g4 correspond to matrices
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Γ1 =



ε2
8 0 0 0

0 ε−2
8 0 0

0 0 1 0

0 0 0 −1

 , Γ2 =



0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1

 ,

Γ3 =



1p
2
ε−1

8
1p
2
ε−1

8 0 0

1p
2
ε5

8
1p
2
ε8 0 0

0 0 1 0

0 0 0 1

 , and Γ4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ε3

 ,

respectively. We readily see that these split in to

Γ1 =
[
ε2

8

]
⊕

[
ε−2

8

]
⊕

[
1
]
⊕

[
−1

]
,

Γ2 =
0 1

1 0

⊕
[

1
]
⊕

[
−1

]
= H2 ⊕

[
1
]
⊕

[
−1

]
,

Γ3 =
 1p

2
ε−1

8
1p
2
ε−1

8

1p
2
ε5

8
1p
2
ε8

⊕
[

1
]
⊕

[
1
]
= H3 ⊕

[
1
]
⊕

[
1
]

,

Γ4 =
[

1
]
⊕

[
1
]
⊕

[
1
]
⊕

[
ε3

]
.

The matrix H2 has Eigenvalues ±1 and corresponding Eigenvectors
[

1 ±1
]T

. However,

H3

 1

±1

=
 1p

2
(ε−1

8 ±ε−1
8 )

1p
2

(ε5
8 ±ε8)

 .

Therefore there is no common Eigenspace between H2 and H3.

Thus, the representation splits as a sum of irreducible sub-representations as C2⊕C1⊕C1.

This gives us two 1-dimensional irreducible subspaces corresponding to the G-invariant

curves C1 = {x y = 0}|X and C2 = {z = 0}|X .

Singularities of G-invariant curves in |−2KX |
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Claim.

lct2
(
X ,G

)= 5

3
.

Proof. On examination, we find that C1 is cuspidal and C2 is nodal.
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6.2 Degree Two

6.2.1 Background

Let X be a del Pezzo surface of degree two. Then the anti-canonical linear system yields a

degree two cover of the projective plane ramified in a smooth quartic plane curve R ⊂ X ,

ψ : X
2:1−→P2,

as such, we may consider X to be a hyper-surface of degree four in Px y zt (1,1,1,2). After a

change of coordinates all such surfaces may be given by an equation of the form

t 2 + f4(x, y, z) = 0,

where f4 is a homogeneous degree four polynomial and R = {
f4 = 0

}|X (see Proposition 77).

Let G be the full group of automorphisms Aut(X) of our surface X , then G is finite by

Lemma 78 and always contains the subgroup Z2 generated by the Geiser involution that

swaps the sheets of the double cover, ψ of P2 (see Section 5.1.4). Details of the possible

automorphism groups realising minimal pairs
(
X ,G

)
and their corresponding equations and

generators can be found in [DI10].

6.2.2 General results

We answer here completely our Questions A and C by calculating the global log canonical

thresholds of the G-surfaces
(
X ,G

)
as G runs through all possible minimal automorphism

groups. Let G = Aut(X) act minimally on our degree two del Pezzo G-surface X .

Lemma 130. lct
(
X ,G

)É 2 for all possible full automorphism groups G.

Proof. It is enough to exhibit a G-invariant member of the bi-anti-canonical linear system

|−2KX |. Observe then that the ramification divisor of the double cover ψ given by R = {
t =

0
}|X = {

f4(x, y, z) = 0
}

is a G-invariant member of |−2KX |.
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From Cheltsov (Theorem 33) we know that

lct
(
X , I

)=


3
4 if |−KX | contains tacnodal curves

5
6 if |−KX | contains no tacnodal curves

where I is the trivial group and X is any degree two smooth del Pezzo with prescribed

anti-canonical linear system.

Thus from this and Lemma 130 above we see that

3

4
É lct

(
X ,G

)É 2.

Lemma 131. Suppose that there exists a curve C ∈ |−KX |G , then lct
(
X ,G

)= lct1
(
X ,G

)
.

Proof. Suppose that there exists λ ∈Q such that lct
(
X ,G

)<λ< lct1
(
X ,G

)É 1. Then there ex-

ists a G-invariant effectiveQ-divisor D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.

By Lemma 96, LCS
(
X,λD

)
is zero-dimensional. Set H = (λ−1)KX . Then KX +λD +H ∼Q

L =OX is Cartier and H is nef and big and we may apply Corollary 93. Whence LCS
(
X,λD

)
consists of at most h0

(
X ,OX

)= 1 point, P .

Since this point P is fixed under the action of G , it must belong to the ramification curve

R of the double cover ψ of P2 by X (see Remark 80). Let L ∈ |−KX | be a curve such that

ψ(L) is a line in P2 tangent to ψ(R) at the point ψ(P ). The curve L consists of at most two

components and is G-invariant by construction. We may assume, by Convexity (Lemma 5),

that L is not contained in the support of D. Since multPλD > 1, intersecting L and λD we

obtain our contradiction:

2 > 2λ= L ·λD Ê multP L ·multPλD > multP L > 2.

Theorem 132. Suppose that |−KX |G =;, then lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Proof. Firstly, by direct calculation (see proofs of Section 6.2.3) the only possibilities for
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minimal pairs
(
X ,G

)
where |−KX |G =; are

G =S4 ×Z2,
(
Z4

2oS3
)×Z2 or PSL2(F7)×Z2.

By Lemma 130, |−2KX |G is non-empty. Suppose that there exists λ ∈Q such that

lct
(
X ,G

)<λ< lct2
(
X ,G

)É 2.

Then there exists a G-invariant effectiveQ-divisor

D =
r∑

i=0
di Di ≡−KX ,

where di ∈Q+ and Di are prime divisors, such that the pair
(
X ,λD

)
is not log canonical. There

are two possibilities for the pair to fail to achieve log canonicity; either some component Dk

of D has large coefficient dk , or D has a point of high multiplicity.

By Lemma 96, LCS
(
X,λD

)
is zero-dimensional and by Corollary 93 consists of at most

three points.

Suppose LCS
(
X,λD

)
consists of exactly one point. Then as this point must be fixed under

the group action, it belongs to the ramification divisor R of the double cover ψ of P2 by X .

Let L ∈ |−KX | be a curve such that ψ(L) is a line in P2 tangent to ψ(R) at the point ψ(P ). The

curve L is then a G-invariant member of the anti-canonical linear system — a contradiction.

Suppose that LCS
(
X,λD

)
consists of two points, P1 and P2 say. These points must belong

to the ramification curve of the double cover by Remark 80. By Lemma 94, P1 and P2 impose

independent linear conditions on H 0
(

X ,OX
(−KX

))
— henceψ(P1) 6=ψ(P2). Furthermore, by

the same argument for the previous case where LCS
(
X,λD

)
consists of one point, the curve Li

whose image ψ(Li ) ⊂P2 is a line tangent to ψ(R) and passing through ψ(Pi ) is a G-invariant

member of |−KX |. The only escape is that the points are in an H-orbit, where G =Z2 ×H .

The action of G =Z2 ×H on X , where the copy of Z2 is generated by the Geiser involution

associated with the swapping of the sheets of the double coverψ : X −→P2, induces an action

of H on P2 and hence on ψ(R). Since the action of the stabilisers StabH (Pi ) É H is linear and
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faithful on the tangent spaces of R at Pi , TPi it follows that

StabG (Pi ) ,→C∗

and thus StabG (Pi ) are cyclic groups for i = 1,2,3. However, by the Orbit-Stabiliser theorem,

the orders for the stabilisers in the three cases for H =S4,Z4
2oZ2 or PSL2(F7) are 23, 25 or

23 ·7, respectively and thus cannot be cyclic. Moreover, the groups S4 and PSL2(F7) have no

maximal subgroups of orders greater than 12,24 respectively and hence are prevented from

having stabilisers of orders 2.

Hence LCS
(
X,λD

)
consists of three points, P1, P2 and P3 that belong to the ramification

curve of the double cover. By Lemma 94, these three points are distinct and by the same

reasoning as above, no pair of points or single point may be fixed by the action of G . Thus,

the group permutes the points and we have a G-orbit of length three. By the considering

the action of H on R as for the two point orbit, we see that there cannont be orbits of length

three.

Theorem 133. Let X be a general3 smooth minimal del Pezzo G-surface of degree two with

the prescribed automorphism group G, then

lct
(
X ,Aut(X)

)=



1 if Aut(X) =Z2,

3
4 if Aut(X) =Zi, for i = 6 or 18,

1 if Aut(X) =Z2 ×Z2,

1 if Aut(X) =Z2 ×Z2 ×Z2,

1 if Aut(X) =S3 ×Z2,

3
4 if Aut(X) =Z2 ×Z6,

1 if Aut(X) =D8 ×Z2,

1 if Aut(X) = (
D8oZ2

)×Z2,

2 if Aut(X) =S4 ×Z2,

1 if Aut(X) =Z4 ×A4 ×Z2,

2 if Aut(X) = (
Z2

4oS3
)×Z2,

2 if Aut(X) =PSL2(F7)×Z2.

3The required generality is made explicit in restrictions on the parameters of the defining equations of X —
that is ‘general’ means not on the list of Theorem 134.
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The following theorem lists the group-invariant global log canonical thresholds for special

cases of smooth minimal del Pezzo G-surfaces of degree two.

Theorem 134. Let X be a smooth minimal del Pezzo G-surface of degree two, then

lct
(
X ,Aut(X)

)=


3
4 if Aut(X) =Z2 and |−KX | contain cuspidal curves,

5
6 if Aut(X) =Z2 and |−KX | contain tacnodal curves,

3
4 if Aut(X) =Z2 ×Z2 and |−KX |G contain cuspidal curves,

5
6 if Aut(X) =Z2 ×Z2 and |−KX |G contain tacnodal curves.

6.2.3 Results for individual automorphism groups

Let X be a smooth minimal del Pezzo G-surface of degree two such that G = Aut(X) and

x, y, z, t be homogeneous coordinates on P(1,1,1,2) with weights 1,1,1,2, respectively. De-

note the automorphism ϕ : X −→ X mapping

(x : y : z : t ) 7→ (
ϕ(x) :ϕ(y) :ϕ(z) :ϕ(t )

)
by

[
ϕ(x),ϕ(y),ϕ(z),ϕ(t )

]
let εk = e

2πi
k be the kth primitive root of unity and write γ for the Geiser involution [x, y, z,−t ].

All notations are described in detail in Chapter 5.

6.2.3.1 Aut(X ) =Z2

Lemma 135.

lct
(
X ,Z2

)=


3
4 if |−KX |G contains tacnodal curves,

5
6 if |−KX |G contains no tacnodal curves.

Equation of surface and group action

Equation of X :

t 2 + f4(x, y, z) = 0.
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Generator of Aut(X ) (Geiser involution):

γ= [x, y, z,−t ].

Proof of Lemma 135. As the automorphism group of any smooth del Pezzo surface of degree

two contains Z2 as a subgroup (Theorem 79), it follows that lct
(
X ,Z2

)= lct
(
X , I

)
, where I is

the trivial group.

6.2.3.2 Aut(X ) =Z6

Lemma 136.

lct
(
X ,G

)= lct1
(
X ,G

)= 3

4
.

Equation of surface and group action

General Equation of X :

t 2 +xz3 + f4(x, y) = 0.

Here Aut(X) may belong to two different conjugacy classes:

(i) Equation of X:

t 2 + z3 f1(x, y)+ f4(x, y) = 0.

Generator of Aut(X ):

g = [x, y,ε3z,−t ].

Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the G-invariant pencil

P= {λx +µy = 0}|X ,

for (λ :µ) ∈P1 and the curve

C1 = {z = 0}|X = {t 2 + f4(x, y) = 0}.
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Singularities of G-invariant curves in |−KX | To prove Lemma 136 for this conjugacy

class it is enough to exhibit a G-invariant curve in | −KX | the has a tacnodal point.

Suppose then that λ1 6= 0; λ1 = −1 then P = {t 2 +αxz3 +βx4 = 0} where α and β are

functions of λ0. Indeed, as λ0 ∈C, we are free to choose λ0 such that it is a root of α or

β. On choosing a value of λ0 such that α= 0 and β 6= 0 we find that P= {t 2 +βx4 = 0} —

a curve with a tacnode.

(ii) Equation of X:

t 2 +x4 + y4 + z3x +αx2 y2 = 0.

Generator of Aut(X ):

g = [x,−y,ε3z,−t ].

Action of G on |−KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the three G-invariant curves:

C1 = {x = 0}|X = {t 2 + y4 = 0},

C2 = {y = 0}|X = {t 2 +x4 + z3x = 0},

C3 = {z = 0}|X = {t 2 +x4 + y4 +αx2 y2 = 0}.

Singularities of G-invariant curves in |−KX | The curve C1 is clearly tacnodal, hence

lct
(
X ,G

)= lct1
(
X ,G

)= 3
4 .

6.2.3.3 Aut(X ) =Z18

Lemma 137.

lct
(
X ,G

)= lct1
(
X ,G

)= 3

4
.

Equation of surface and group action

Equation of X :

t 2 +x4 +x y3 + y z3 = 0.
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Generator of Aut(X ):

g = [x,ε3 y,ε2
9z,−t ].

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the three G-invariant curves:

C1 = {x = 0}|X = {t 2 + y z3 = 0},

C2 = {y = 0}|X = {t 2 +x4 = 0},

C3 = {z = 0}|X = {t 2 +x4 +x y3 = 0}.

Singularities of G-invariant curves in | − KX | The curve C2 is clearly tacnodal, hence

lct
(
X ,G

)= lct1
(
X ,G

)= 3
4 .

6.2.3.4 Aut(X ) =Z2 ×Z2

Lemma 138.

lct
(
X ,G

)=


3
4 if f4(x, y) and f2(x, y) have a shared root,

3
4 if f4(x, y) = 0, x4 or y4,

5
6 if f4(x, y) = x3 y or f4(x, y) = x y3,

1 otherwise.

Equation of surface and group action

Equation of X :

t 2 + z4 + z2 f2(x, y)+ f4(x, y) = 0.

Generators of Aut(X ):

g1 = [x, y, z,−t ], g2 = [x, y,−z, t ].

Generality conditions The polynomials f2(x, y) and f4(x, y) are general such that the re-

sulting surface X is smooth. Thus all the cases of Lemma 138 may occur.
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Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the G-invariant pencil

P= {λx +µy = 0}|X ,

for (λ :µ) ∈P1 and the curve

C1 = {z = 0}|X = {t 2 + f4(x, y) = 0}.

Singularities of G-invariant curves in |−KX | Let us first examine the pencil P. Suppose

that µ 6= 0;µ=−1, then P= {t 2 + z4 +αx2z2 +βx4 = 0} where α and β are functions of λ. We

see that if α(λ) = β(λ) are identically zero, or if f2(x, y) and f4(x, y) share a common root

then P contains a tacnodal curve. Otherwise, if one (or both) of α and β are non-zero then P

contains a curves with no worse than nodal points. For the curve C1, it is possible for it to

be smooth, nodal, cuspidal or tacnodal dependant on f4(x, y); if f4(x, y) = x4 or f4(x, y) = y4,

then C1 has a tacnode; if f4(x, y) = x3 y or f4(x, y) = x y3, then C1 has a cusp; otherwise it has

singularities no worse than nodes.

6.2.3.5 Aut(X ) =Z2 ×Z2 ×Z2

Lemma 139.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z4 + y4 +x4 +ax2 y2 +bx2z2 + c y2z2 = 0,

with a 6= b 6= c.

Generators of Aut(X ):

γ= [x, y, z,−t ], g1 = [x, y,−z, t ], g3 = [x,−y, z, t ].
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Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the three G-invariant curves:

C1 = {x = 0}|X = {t 2 + z4 + y4 + c y2z2 = 0},

C2 = {y = 0}|X = {t 2 + z4 +x4 +bx2z2 = 0},

C3 = {z = 0}|X = {t 2 +x4 + y4 +ax2 y2 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. We see that for general values of a,b and c these curves are smooth. For C1 (resp. C2,

C3), if c =±2 (resp. b =±2, a =±2 ) then it has a nodal point.

6.2.3.6 Aut(X) =S3 ×Z2

Lemma 140.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 +x4 +ax2 y z +x(y3 + z3)+by2z2 = 0.

Generators of Aut(X ):

g1 = [x, z, y, t ], g2 = [x,ε3 y,ε−1
3 z, t ],γ= [x, y, z,−t ].

Action of G on |−KX |

Claim. Let C = {x = 0}|X = {t 2 +by2z2 = 0}. Then C is the only G-invariant member of the

anti-canonical linear system.
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Proof. The action of G on |−KX |∼= C3 splits into a sum of a one-dimensional and irreducible

two-dimensional sub-representations. Indeed, the generators g1, g2 and γ correspond to

matrices

Γ1 =


1 0 0

0 0 1

0 1 0

= I ⊕S1, Γ2 =


1 0 0

0 ε3 0

0 0 ε−1
3

= I ⊕S2 and T = Id.

However, S1 has Eigenvalues ±1 corresponding to Eigenvectors
[

1 ±1
]T

but

S2

 1

±1

=
 ε3

±ε−1
3

 .

Hence result.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. If b is zero, then our surface X will be singular. Thus b 6= 0 and the curve C1 has at

worst nodal singularities.

6.2.3.7 Aut(X ) =Z2 ×Z6

Lemma 141.

lct
(
X ,G

)= lct1
(
X ,G

)= 3

4
.

Equation of surface and group action

Equation of X :

t 2 +x4 + y4 +xz3 +ax2 y2 = 0,

with a 6= 0.
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Generators of Aut(X ):

g = [x,ε3
6 y,ε2

6z, t ],γ= [x, y, z,−t ].

Action of G on | − KX | By Lemma 30 and Remark 31 the anti-canonical linear system

contains the three G-invariant curves:

C1 = {x = 0}|X = {t 2 + y4 = 0},

C2 = {y = 0}|X = {t 2 +x4 +xz3 = 0},

C3 = {z = 0}|X = {t 2 +x4 + y4 +ax2 y2 = 0}.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 3

4
.

Proof. The curve C1 is tacnodal.

6.2.3.8 Aut(X) =D8 ×Z2

Lemma 142.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z4 +x4 + y4 +ax2 y2 +bz2x y = 0,

with a,b 6= 0.

Generators of Aut(X ):

g1 = [y, x, z, t ], g2 = [i x,−i y, z, t ],γ= [x, y, z,−t ].
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Action of G on |−KX |

Claim. The only G-invariant element in |−KX | is the curve

C = {z = 0}|X = {t 2 +x4 + y4 +ax2 y2 = 0}.

Proof. By inspection of the generators of this action, we see that that the representation of

G on C3∼= |−KX | splits into a direct sum of a one-dimensional sub-representation and an

irreducible two-dimensional sub-representation. Hence result.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. The curve C is smooth for general values of a. When a = 2 we may write the equation

for C as t 2 + (x2 + y2)2, which we can easily see has a pair of nodal points.

6.2.3.9 Aut(X) = (
D8oZ2

)×Z2

Lemma 143.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z4 +x4 +ax2 y2 + y4 = 0,

with a2 6= 0,−12,4,36.

Generators of Aut(X ):

g1 = [i x, i y, z, t ], g2 = [x,−y, z, t ], g3 = [y, x, z, t ],γ= [x, y, z,−t ].
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Action of G on |−KX |

Claim. The only G-invariant element in |−KX | is the curve

C = {z = 0}|X = {t 2 +x4 + y4 +ax2 y2 = 0}.

Proof. As for the previous group, by inspection of the generators of this action, we see that

that the representation of G on C3∼= |−KX | splits into a direct sum of a one-dimensional sub-

representation and an irreducible two-dimensional sub-representation. Hence result.

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. The curve C is smooth for general values of a. When a = 2 we may write the equation

for C as t 2 + (x2 + y2)2, which we can easily see has a pair of nodal points.

6.2.3.10 Aut(X) =S4 ×Z2

Lemma 144.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 + z4 + y4 +x4 +a(x2 y2 +x2z2 + y2z2) = 0,

if a = −1±p7
2 or a = 0, then the automorphism group will be larger than S4 ×Z2. For

a = −1±p7
2 , Aut(X) =PSL2(F7)×Z2 and for a = 0 Aut(X) =Z2 ×Z2

4oS3. Thus we require

a 6= 0 or −1±p7
2 .

Generators of Aut(X ):

g1 = [x, y,−z, t ], g2 = [y, x, z, t ], g3 = [x, z, y, t ], γ= [x, y, z,−t ].
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Action of G on |−KX |

Claim. |−KX |G =;.

Proof. The claim follows from the fact that G acts on C3∼= |−KX | by permutation and sign

changes of the coordinates x, y and z.

Action of G on |−2KX | On examining the action of G on |−2KX | = 〈t , x2, y2, z2, x y, xz, y z〉
we see that |−2KX |G consists of two curves

C1 = {t = 0}|X = {z4 + y4 +x4 +a(x2 y2 +x2z2 + y2z2) = 0},

(the ramification divisor of the double cover of P2) and

C2 = {x2 + y2 + z2 = 0}|X = {t 2 +a(z4 − y4)+ (2+a)y2z2 = 0}.

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. The curve C1 is smooth, as it is the ramification divisor of the double cover of P2. For

C2, note that it has at most two singular points and so the pair
(
X ,C2

)
is log canonical, by the

proof of Theorem 132.

6.2.3.11 Aut(X) =Z4•A4 ×Z2

Lemma 145.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

t 2 + z4 +x4 +2
p−3x2 y2 + y4 = 0.
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Generators of Aut(X ):

g1 =
[

x + i y

1− i
,

x − i y

1− i
,ε6z, t

]
, g2 = [y, x, z, t ], g3 = [x,−y, z, t ],

g4 = [x, y, i z, t ], γ= [x, y, z,−t ].

Proof of Lemma 145. In this case we see that the automorphism group G contains the sub-

group H = (
D8oZ2

)×Z2. From above, we know then that lct
(
X , H

)= 1. Thus to show the

above Lemma it is enough to exhibit any G-invariant member of |−KX |. Observe then that

C = {
z = 0

}|X is a smooth G-invariant curve in |−KX |.

6.2.3.12 Aut(X) = (Z2
4oS3)×Z2

Lemma 146.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 +x4 + y4 + z4 = 0.

Generators of Aut(X ):

g1 = [x, i y, z, t ], g2 = [y, x, z, t ], g3 = [x, z, y, t ],γ= [x, y, z,−t ].

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. Since S3 acts on the coordinates x, y and z a G-invariant divisor in |−KX | must be of

the form C = {λ0x +λ1 y +λ2z = 0} with (λ0 :λ1 :λ2) ∈P2. However, g1(C ) 6=C .

Action of G on |−2KX |
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Claim. The only G-invariant curve in |−2KX | is T = {t = 0}|X = {x4 + y4 + z4 = 0}.

Proof. Since T is the ramification curve of the double cover of P2, it must be G-invariant.

Let us try and construct another invariant curve in |−2KX |. As before due to the subgroup

S3 = 〈g2, g3〉 acting on H 0
(

X ,OX
(−2KX

))∼= C7, any curve in | −2KX | must be of the form

C = {
νt +λx2+λy2+λz2+µx y +µxz+µy z = 0

}
with λ,µ not both zero (other wise we have

the curve T ). However, g1(C ) 6=C .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. The curve T is clearly smooth.

6.2.3.13 Aut(X) =PSL2(F7)×Z2

Lemma 147.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action

Equation of X :

t 2 +x3 y + y3z + z3x = 0.

Generators of Aut(X ):

γ= [x, y, z,−t ], f = [ε7x,ε2
7 y,ε4

7z], g = [y, z, x],h,

where h is defined by the matrix

i

7


ε7 −ε6

7 ε2
7 −ε5

7 ε4
7 −ε3

7

ε2
7 −ε5

7 ε4
7 −ε3

7 ε7 −ε6
7

ε4
7 −ε3

7 ε7 −ε6
7 ε2

7 −ε5
7

 .
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Action of G on |−KX | It is easy to see that the subgroup generated by f and g leaves no

divisor in |−KX | invariant, thus it follows that |−KX |G =;.

Action of G on |−2KX |

Claim.

lct2
(
X ,G

)= 2.

Proof. On examining the representations of the generators of G on C7∼= |−2KX | we find that:

The representation of the subgroup generated by f splits as the direct sum C⊕C · · ·⊕C —

acting identically on each copy of C; the representation of the subgroup generated by g splits

as C3 ⊕C3 ⊕C— acting with the standard representation of cyclic group of order three on the

copies of C3 and identically on the last copy of C. This implies that the only curve in |−2KX |
invariant under the subgroup of G generated by f and g is the (non-singular) ramification

curve of the double cover of P2, R = {t = 0}|X . Since this curve is also invariant under the

actions of both γ and h we have that R is the only member of |−2KX |G and lct2
(
X ,G

)= 2.

Note: Alternatively, we could apply Theorem 97.
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6.3 Degree Three — Cubic Surfaces

6.3.1 Background

Let X be a smooth del Pezzo surface of degree three, then X is isomorphic to a cubic surface

(Proposition 77) and for generic X , Aut(X) = G is trivial (Proposition 79). For any X , G is

finite by Lemma 78. Details of the possible automorphism groups realising minimal pairs(
X ,G

)
and their corresponding equations and generators can be found in [DI10] and for

non-minimal pairs in [Hos97, Hos02].

6.3.2 General results

Let
(
X ,G

)
be minimal with X and G as above. We answer here completely our Questions A

and C of Section 3.2 by calculating the global log canonical thresholds of the G-surfaces(
X ,G

)
as

(
X ,G

)
runs through all possible minimal pairs.

From Cheltsov (Theorem 33) we know that

lct
(
X , I

)=


2
3 if |−KX | has curves with Eckardt points,

3
4 if |−KX | has curves with Eckardt points.

where I is the trivial group and an Eckardt point is a point on X where three lines meet

concurrently (see Definition 83).

Lemma 148. 2
3 É lct

(
X ,G

)É 4 for all possible automorphism groups G.

Proof. From Theorem 33 we find the lower bound. The upper bound follows from Lem-

mata 166, 164 and the observation that for all G 6=Z3
(
Z2

3oZ4
)

or S5 the divisor C = {x y zt =
0}|X is a G-invariant member of |−4KX |G and the log pair

(
X ,C

)
is log canonical.

Lemma 149. Suppose that there exists a curve C ∈ |−KX |G , then lct
(
X ,G

)= lct1
(
X ,G

)
.

Proof. Suppose that there exists λ ∈Q such that lct
(
X ,G

)<λ< lct1
(
X ,G

)É 1. Then there ex-

ists a G-invariant effectiveQ-divisor D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.
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By Lemma 96, LCS
(
X,λD

)
is zero-dimensional. Set H = (λ−1)KX . Then KX +λD +H ∼Q

L =OX is Cartier and H is nef and big and we may apply Corollary 93. Whence LCS
(
X,λD

)
consists of at most h0

(
X ,OX (L)

)= 1 point, P .

There is a birational morphism, π : X −→P2 that is an isomorphism in a neighbourhood

of P where π(D) ≡−KP2 . Let L be a general line on P2, then

LCS
(
P2,π(λD)+L

)= {
π(P)+L

}
.

However, −(
KP2 +π(λD)+L

)
is ample. Hence, by Shokurov Connectedness (Theorem 92), L

and π(P ) are connected — contradiction.

Suppose that
(
X ,G

)
is minimal and that |−KX |G =;, then from Section 6.3.3 we see that

the only possibilities for G are S5 or Z2
3oS4.

Proposition 150 (Cheltsov [Che08]). Let Aut(X) =S5 or Z2
3oS4, then

lct
(
X ,S5

)= lct2
(
X ,S5

)= 2,

or

lct
(
X ,Z2

3oS4
)= lct4

(
X ,Z2

3oS4
)= 4,

respectively.

Proof. Let G =S5. We apply Theorem 97 with k = 5, ξ= 2, r = 1 and H =−KX . Alternatively,

see Lemmata 166 and 167.

Let G =Z2
3oS4. In this case we cannot apply Theorem 97 as h0

(
X ,OX

(−3KX
))= 19 is

too large. By inspection, we see that |−KX |G = |−2KX |G = |−3KX |G =;, and by Lemma 148

lct
(
X ,G

)É 4.

Suppose, to seek a contradiction, that lct
(
X ,G

)<λ< 4. Then there exists a G-invariant

effectiveQ-divisor D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.

Lemma 96 and Corollary 93, imply that LCS
(
X,λD

)
is zero-dimensional and consists of,

at most, 19 points. Since the smallest G-orbit on X is the orbit of the 18 Eckardt points on X
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and furthermore there are no orbits of 19 points since 19 - 648 = |G|, it follows that LCS
(
X,λD

)
consists precisely of these 18 Eckardt points P1, . . . ,P18.

We may assume that C * Supp(D) by Lemma 5 and intersect C with D yielding

12 =C ·D Ê
18∑

i=1
multPi (C )multPi (D) Ê

18∑
i=1

2multPi (D) Ê 36multPi (D),

that is,

multPi (D) Ê 1

3
. (6.6)

Let π : Y → X be the blowup of X at the points P1, . . . ,P18 with exceptional divisors

Ei = π−1(Pi ) for 1 É i É 18 and strict transforms denoted with bars. By taking the log pull-

back of the pair
(
X ,λD

)
under π we see that the pair

(
Y ,λD +

18∑
i=1

(
λmultPi (D)−1

)
Ei

)

is not log canonical at some points Q1, . . .Q18. From Remark 11 it follows that for 1 É i É 18,

multQi (D)+multPi (D) > 1

2
. (6.7)

Let Σ be a G-orbit of the point Qk for some 1 É k É 18, then Σ∩Ek 6=Qk as the representa-

tion induced by the stabiliser of Pk on its tangent space is irreducible.

Intersecting Ek with D gives

multPk (D) = Ek ·D Ê |Σ∩Ek | ·multQk (D).

Together with Equations (6.6) and (6.7) this implies that |Σ∩Ek | = 1 — a contradiction.

We summarise these results in the following theorem.

Theorem 151. Let X be a smooth minimal del Pezzo G-surface of degree three with the pre-
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scribed automorphism group G, then

lct
(
X , Aut (X )

)=



2
3 if Aut(X) =Zi (i = 2,4,8),

2
3 if Aut(X) =Z2 ×Z2,

1 if Aut(X) =S3 or S3 ×Z2,

1 if Aut(X) =S4,

1 if Aut(X) =Z3
(
Z2

3oZ2
)

or Z3
(
Z2

3oZ4
)
,

2 if Aut(X) =S5,

4 if Aut(X) =Z3
3oS4.

6.3.3 Results for individual automorphism groups

Let X be a smooth minimal cubic G-surface such that G = Aut(X) and x, y, z, t be homoge-

neous coordinates on P3. Denote the automorphism ϕ : X −→ X mapping

(x : y : z : t ) 7→ (
ϕ(x) :ϕ(y) :ϕ(z) :ϕ(t )

)
by

[
ϕ(x),ϕ(y),ϕ(z),ϕ(t )

]
,

and let εk = e
2πi

k be the kth primitive root of unity. All notations are described in detail in

Chapter 5.

6.3.3.1 Aut(X ) =Z2

Lemma 152.

lct
(
X ,G

)= lct1
(
X ,G

)= 2

3
.

Here the generator g of our cyclic automorphism group may belong to two distinct

conjugacy classes, 4A1 or 2A1 (in the notation of [DI10]).

(i) For g ∈ 4A1:

Equation of surface and group action

Equation of X :

t 2 f1(x, y, z)+x3 + y3 + z3 +αx y z = 0.
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Generator of Aut(X ):

g = [x, y, z,−t ].

Generality conditions Observe that f1(x, y, z) cannot be identically zero as then G

would act identically on X .

(ii) For g ∈ 2A1:

Equation of surface and group action

Equation of X :

xz(z +αt )+ y t (z +βt )+x3 + y3 = 0.

Generator of Aut(X ):

g = [x, y,−z,−t ].

Proof of Lemma 152. It is enough in both cases to exhibit a G-invariant member of the anti-

canonical linear system whose lct is 2/3.

In the first case; we may write f1(x, y, z) =λx +µy +νz, with (λ :µ : ν) ∈P2. Suppose that

λ 6= 0, then we see that the curve {x = 0}|X splits into three distinct lines — that is X has an

Eckardt point.

In the second case; consider the curve cut out of X by the hyperplane H = {z+ t = 0}. This

curve is G-invariant and splits into three lines making an Eckardt point.

6.3.3.2 Aut(X ) =Z4

Lemma 153.

lct
(
X ,G

)= lct1
(
X ,G

)= 2

3
.

Again the generator g of our cyclic automorphism group may belong to two distinct

conjugacy classes, D4(a1) or A3 + A1 (in the notation of [DI10]).

(i) For g ∈ D4(a1):
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Equation of surface and group action

Equation of X:

t 2z + f3(x, y)+ z2(x +αy) = 0.

Generator of Aut(X ):

g = [x, y,ε2
4z,ε4t ].

(ii) For g ∈ A3 + A1:

Equation of surface and group action

Equation of X:

x3 +x y2 + y t 2 + y z2 = 0.

Generator of Aut(X ):

g = [x,ε2
4 y,ε4z,ε3

4t ].

Proof of Lemma 153. As in the previous case where G =Z2; if we take hyperplane sections of

X with H = {z = 0} in the first case and {z+ t = 0} in the second we easily get that lct
(
X ,G

)É 2
3 .

Hence by Corollary 148 we are done.

6.3.3.3 Aut(X ) =Z8

Lemma 154.

lct
(
X ,G

)= lct1
(
X ,G

)= 2

3
.

Equation of surface and group action

Equation of X:

t 2 y + z2t +x y2 +x3 = 0.

Generator of Aut(X ):

g = [x,ε4
8 y,ε3

8z,ε2
8t ].
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Proof of Lemma 154. Factoring the equation of X as t (t y + z2)+ x(x − i y)(x + i y) = 0, we see

that the hyperplane H = {t = 0} intersects X in an Eckardt point at (0 : 0 : 1 : 0) and that

H |X ∈ |−KX |G .

6.3.3.4 Aut(X ) =Z2 ×Z2

Lemma 155.

lct
(
X ,G

)= lct1
(
X ,G

)= 2

3
.

Equation of surface and group action

Equation of X:

t 2(x + y +az)+x3 + y3 + z3 +6bx y z = 0.

Generators of Aut(X ):

g1 = [x, y, z,−t ], g2 = [y, x, z, t ].

Generality conditions We require that 8b3 6= −1 to prevent the group from enlarging.

Proof of Lemma 155. By Proposition 85, we know that our cubic surface X has two Eckardt

points — (0 : 0 : 0 : 1) and (1 : −1 : 0 : 0) — corresponding to the isolated fixed points of the

generators of G . Observe then that the curve cut out of X by the hyperplane {z = 0} is the

union of three lines intersecting at the point (0 : 0 : 0 : 1).

6.3.3.5 Aut(X ) =S3

Lemma 156.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X is:

x3 + y3 +azt (x +by)+ z3 + t 3 = 0.
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Generators of Aut(X ):

(x : y : z : t )

(x : y : ε3z : ε2
3t )

(x : y : ε2
3t : ε3z)

(x : y : ε3t : ε2
3z)(x : y : t : z)

(x : y : ε2
3z : ε3t )

_

g

OO

) g2

44iiiiiiiiiii

v

g1

��6666666666666H

g0

���������������

�g 2

jjUUUUUUUUUUU

Generality conditions We require a,b ∈Cwith a 6= 0 and b3 6= −1.

Action of G on |−KX |

Claim 157. For 0 É i É 2, the points Pi = (0 : 0 : 1 : −εi
3) are the only Eckardt points on X .

Proof. We find the isolated fixed points of the automorphisms g , g 2, g0, g1, g2 then apply

Proposition 85. From the definitions of the maps above we see that g and g 2 fix the line

M= {z = t = 0} and the points R1 = (0 : 0 : 0 : 1), R2 = (0 : 0 : 1 : 0) and for i = 0,1,2 the gi fix

planes Πi = {t − εi
3z = 0} and points Pi = (0 : 0 : 1 : −εi

3). Thus the only isolated fixed points

we find are a Pi for each gi . The proposition tells us that each of the Eckardt points on X

corresponds to an isolated fixed point of an involution and we are done.

It is clear from the maps g , g 2, g0, g1, g2 that our S3 action here has a representation on

C4 that decomposes as the direct sum C1 ⊕C1 ⊕C2. The representations on first two C1 are

the identity map and on the third factor, the standard two dimensional representation of S3.

Observe then that L= {x = y = 0} is an S3-invariant line not contained in the surface X .

Indeed, from the equation of X or from the fact that P1,P2,P3 lie on X and Proposition 86
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(a line passing through three Eckardt points may not be contained in the surface) we see

that L is not contained in the surface. That L is S3-invariant follows from the previous

paragraph.This proves the following Claim.

Claim. Let D be an effectiveS3-invariantQ-divisor in the anti-canonical linear system |−KX |.
Then D = H ∩X where H ∈H= {λx +µy = 0} is a member of the pencil of planes through the

line L where (λ :µ) ∈P2.

Singularities of G-invariant curves in |−KX |

Claim 158. The curves C=H∩X have, at worst, nodal singularities.

Proof. Let H be a member of H= {λx +µy = 0} and assume λ 6= 0. Then we may write

C= H ∩X = {y3(1−µ3)+ay zt (b −µ)+ z3 + t 3 = 0 : a 6= 0,b3 6= −1}.

Looking at the partial derivatives

∂C

∂y
= 3y2(1−µ3)+azt (b −µ),

∂C

∂z
= ay t (b −µ)+3z2,

∂C

∂t
= ay z(b −µ)+3t 2,

we see that the only possible singular points are

Pk =
(

3µε2k
3

a(b −µ)
: − 3ε2k

3

a(b −µ)
: 1 : εk

3

)
,

for k = 0,1,2 where µ satisfies

F (µ) = 27(1−µ3)+a3(b −µ)3 = 0

with b 6=µ and the points

Qm = (−εm
3 : 1 : 0 : 0),



130 6.3. Degree Three — Cubic Surfaces

where ε3 is the primitive cube root of unity.

Observe that, on the chart where z 6= 0, if b = µ then the curve C is non-singular here.

Thus we may assume that b 6=µ.

The Hessian matrix for C on this chart is:

A=
 6y(1−µ3) a(b −µ)

a(b −µ) 6t

 .

The determinant of A evaluated at the singular points P1,P2,P3 we found above yields

the equation;

−108(1−µ3) = a3(b −µ),

where µ must satisfy F (µ). Putting this together we see that detA= 0 if, and only if, µ3 = 1.

However this holds only when b = µ (since a 6= 0). Thus, the determinant of A is always

non-zero on this chart. It follows that the points P1,P2,P3 are nodal points.

Next, for m = 0,1,2, the three points Qm = (−εm
3 : 1 : 0 : 0) lie on the chart where y 6= 0.

Here z = 0 implies that µ3 = 1. The equation of C is then;

azt (b −µ)+ z3 + t 3 = 0.

Observe that if b =µ then the points Q0,Q1,Q2 are three more Eckardt points on our surface.

This would contradict Claim 157, so that b 6=µ on this chart also. As before, we examine the

Hessian:

A=
 6z a(b −µ)

a(b −µ) 6t

 .

The determinant of A restricted to the points Q0,Q1,Q2 may only be zero if a = 0 or b =µ.

Hence, all the singular points Q0,Q1,Q2 are nodes.

Alternatively, we may observe that for a fixed µ; C is a plane cubic curve with three

singular points on it. Thus the only possibility is that C is the sum of three lines intersecting

in three distinct points and forming a triangle.
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Corollary 159.

lct1
(
X ,S3

)= 1.

Proof. Suppose that lct1
(
X ,S3

) < 1, then there exists an effective S3-invariant Q-divisor,

B ∈ |−KX | such that the log pair (X ,B) is not lc. This, however, contradicts Claim 158.

6.3.3.6 Aut(X ) =S3 ×Z2

Lemma 160.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

x3 + y3 +azt (x + y)+ z3 + t 3 = 0.

The difference between the surfaces we saw in Section 6.3.3.5 and the ones we’ll look

at here is an additional Z2-action. This involution swaps the coordinates x and y .

Generality conditions We relax our conditions from the previous section to allow the extra

Z2-action. More explicitly, we require a,b ∈Cwith a 6= 0.

Proof of Lemma 160. Observe that the introduction of this extra involution does not alter

the log canonical threshold. Indeed it is easy to see, as we observed above, that the line

L= {x = y = 0} is invariant under this larger automorphism action. As in the previous case

we see that the analogues of Claim 158 and Corollary 159 are true in this case too.

6.3.3.7 Aut(X ) =S4

Lemma 161.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.
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Equation of surface and group action The equation of a cubic surface with automorphism

group S4 and the action of S4 is described neatly in [DI10] (Section 6.5), which we para-

phrase here.

S4 has four subgroups isomorphic to S3, each pair of which share a common element

of order two. From Propositions 85 and 86, we see that this corresponds to four lines,

L1,L2,L3,L4, in P3 each with three Eckardt points (one on each line is at infinity) and

each pair meeting once in an Eckardt point, P1, . . . ,P6. Thus the four lines must form a

quadrangle in the plane. Also observe that since each of the three diagonals, D1,D2,D3,

contains only two Eckardt points, these three lines must be contained in the surface. This is

depicted in Figure 6.3.3.7.

L1L2

L3

L4

D1

D2

D3P1P2

P3 P4

P5

P6

Figure 6.5: Lines in P3 and the S4-cubic surface.

Taking the equations of this plane to be x = 0 and the equations of the diagonals to

be x = y = 0, x = z = 0 and x = t = 0. We see that the group acts by permutation of the

coordinates y, z, t and multiplication by ±1. The equation of our surface X is then

x3 +x(y2 + z2 + t 2)+ay zt = 0.

Generality conditions We require for the variable a that 9a3 6= 8a.
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Action of G on |−KX |

Claim. C = {x = 0} is the only S4-invariant hyperplane in P3.

Proof. Let C = {
αx +βy +γz +δt = 0 | (α :β : γ : δ) ∈P3

}
be aS4-invariant hyperplane and let

σ ∈S4. Then σC = {αx ±βσ(y)±γσ(z)±δσ(t ) = 0} =C . Hence C = {x = 0}.

Corollary 162. The only S4-invariant effectiveQ-divisor in the anti-canonical linear system

|KX | is C |X .

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. By inspection, the curve C |X = {x = 0}|X has no worse than nodal singularities.

6.3.3.8 Aut(X ) =Z3
(
Z2

3oZ2
)

Lemma 163.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.

Equation of surface and group action

Equation of X :

x3 + y3 + z3 + t 3 +6ay zt = 0.

Generators of Aut(X ):

g = [ε3x, y, z, t ],τ= [x, y,ε3z,ε2
3t ],h1 = [x, z, t , y],h2 = [x, z, y, t ].

Generality conditions For special values of a, there may be further automorphisms of

orders 4 or 6. When 1−20a3 −8a6 = 0 the extra automorphism of order four is given by

ξ= [x, y + z + t , y +εz +ε2t , y +ε2z +εt ],
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and the automorphism group grows to Z3
(
Z2

3oZ4
)

— see Section 6.3.3.8. When a(a3 −1) = 0

the surface is projectively equivalent to surfaces with automorphism groups Z3
3oS4 — see

Section 6.3.3.11.

Thus we require that a(a3 −1) 6= 0 and 20a3 +8a6 6= 1 here.

Action of G on |−KX | Observe that X has no sub-varieties fixed by the action of G . Indeed,

looking at each individual automorphism; g fixes only the plane H = {x = 0} and the point

(1 : 0 : 0 : 0), τ fixes only the line M= {z = t = 0} and the points (0 : 0 : 0 : 1) and (0 : 0 : 1 : 0).

The action of S3 on the coordinates y, z and t fixes only the line N= {y = z = t = 1} and the

point (1 : 0 : 0 : 0). Thus, we see that the only fixed sub-variety of the action G is the point

(1 : 0 : 0 : 0), which does not belong to X .

Claim. Let C be an effective G-invariant Q-divisor in the anti-canonical linear system |−KX |.
Then C = {x = 0}|X .

Proof. The representation of G splits into two irreducible factors, C1⊕C3, with the first factor

corresponding to the identity action on the coordinate x. Whence, the only G-invariant

subspace of P3 is {x = 0} and thus, the only G-invariant divisor in the anti-canonical linear

system is D = {x = 0}|X .

Singularities of G-invariant curves in |−KX |

Claim.

lct1
(
X ,G

)= 1.

Proof. By inspection, the curve C = {x = 0}|X is smooth.

6.3.3.9 Aut(X ) =Z3
(
Z2

3oZ4
)

Lemma 164.

lct
(
X ,G

)= lct1
(
X ,G

)= 1.
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Equation of surface and group action

Equation of X :

x3 + y3 + z3 + t 3 +6ay zt = 0.

Generators of Aut(X ):

g = [ε3x, y, z, t ], τ= [x, y,ε3z,ε2
3t ], h1 = [x, z, t , y],

h2 = [x, z, y, t ], ξ= [x, y + z + t , y +ε3z +ε2
3t , y +ε2

3z +ε3t ].

Generality conditions We wish for the automorphism group to jump in size, namely that

1−20a3 −8a6 = 0 to allow the extra symmetry embodied in ξ. However we must restrict

the automorphism group from jumping in size further to Z3
3oS4, thus we also require that

a(a3 −1) 6= 0.

Proof of Lemma 164. Word-for-word the two claims of the previous section (Section 6.3.3.8)

are true in this case too.

6.3.3.10 Aut(X ) =S5

Lemma 165.

lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Equation of surface and group action Equation of X (Clebsch cubic):

x2 y +xz2 + zt 2 + t x2 = 0.

X is isomorphic to a complete intersection inP4 with homogeneous coordinates x0, . . . , x4

given by equations
4∑

i=0
x3

i =
4∑

i=0
xi = 0,

and here the action of S5 is realised as the standard representation on x0, . . . , x4.
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Lemma 166.

lct
(
X ,G

)É lct2
(
X ,G

)É 2.

Proof. Observe that the divisor cut out by the equations
∑4

i=0 x2
i = 0 ⊂ P4 is a G-invariant

member of |−2KX |.

See Proposition 150 or the following Lemma.

Lemma 167.

lct
(
X ,G

)= 2.

Proof. Suppose that there exists λ ∈Q such that lct
(
X ,G

)<λ< 2. Then there is an effective

Q-divisor D ≡−KX such that the pair
(
X ,λD

)
is not log canonical.

If LCS
(
X,λD

)
is zero-dimensional, then by Lemma 93 (with H = (λ−2)KX ) it consists of

at most four points. However, the representation of S5 on |−KX | is irreducible and S5 has no

orbits of length less than 5.

Thus LCS
(
X,λD

)
is not zero-dimensional and we may write D = mC +Ω where λm > 1

and C ∈ |− ξKX |G for some ξ ∈ Z>0. Following the proof of Lemma 96, we conclude that

ξ = 1; that is, C is an irreducible G-invariant curve in the anti-canonical linear system —

impossible.

6.3.3.11 Aut(X ) =Z3
3oS4

Lemma 168.

lct
(
X ,G

)= lct4
(
X ,G

)= 4.

Equation of surface and group action Equation of X (Fermat Cubic):

x3 + y3 + z3 + t 3 = 0.
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The group Z3
3oS4 acts in the obvious way — the standard representation of S4 on x, y, z

and t and acting by multiplication by cube roots of unity.

For proof of the above Lemma, see Proposition 150.
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6.4 Degree Four

6.4.1 Background

Let X be a smooth del Pezzo surface of degree four. Then by Proposition 77, X is a complete

intersection of two quadrics in P4 with homogeneous coordinates x0, . . . , x4 and can be given

by the equations
4∑

i=0
x2

i =
4∑

i=0
αi x2

i = 0

with αi 6=α j for i 6= j (see, for example, [Rei72, Proposition 2.1]).

Let G be the group of automorphisms Aut(X) of our surface X , then G is finite by

Lemma 78. We answer here completely Questions A and C of Section 3.2. Details of the

possible groups acting regularly on X such that the pairs
(
X ,G

)
are minimal can be found in

[DI10] (cf. [Hos96]).

Remark 169. By Proposition 79, the full automorphism group of a degree four del Pezzo

surface always contains the subgroup Z4
2 generated by si : xi 7→ −xi , for i ∈ {1, . . . ,4} (we get s0

for free via the C∗ action on P4).

6.4.2 General results

Let
(
X ,G

)
be minimal with X and G as above. From Cheltsov (Theorem 33) we know that

lct
(
X , I

)= 2

3
,

where I is the trivial group.

Lemma 170. For any del Pezzo surface of degree four,

lct(X ,Aut(X)) Ê 1

Proof. This follows immediately from Claim 175 and Remark 169.

Lemma 171. Suppose that there exists C ∈ |−KX |G . Then lct
(
X ,G

)= lct1
(
X ,G

)= 1.
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Proof. It follows from the assumption that there exists C ∈ |−KX |G that lct
(
X ,G

)É 1, together

with Lemma 170 we are done. For a direct proof see below.

Suppose that there exists λ ∈Q such that lct
(
X ,G

)<λ< lct1
(
X ,G

)= 1. Then there is an

effective G-invariant Q-divisor D =∑r
i=1 di Di ≡−KX on X such that the log pair

(
X ,λD

)
is

not log canonical.

Suppose that LCS
(
X,λD

)
is not zero dimensional. Then we may assume that λd1 > 1. The

intersection

4 = D · (−KX ) Ê d1D1 · (−KX ) > deg(D1) Ê 1

shows that the curve D1 has degree one, two or three. Let H |X = R +D1 be a hyperplane

section of X passing through the curve D1, then

3 > 3λÊλ(4−deg(D1)) = R ·λD Êλd1(R ·D1) > R ·D1 Ê 3.

Hence LCS
(
X,λD

)
is zero dimensional and by Corollary 93 consists of at most one point, P .

There is a birational morphism π : X −→P2 that is an isomorphism in a neighbourhood

of the point P and π(D) ≡−KP2 . Take a general line L on P2, then

LCS
(
P2,π

(
λD

)+L
)
= {

π(P)∪L
}

and −
(
KP2 +π(

λD
)+L

)
is ample. However, LCS

(
P2,π

(
λD

)+L
)

is not connected and this

contradicts the Shokurov Connectedness Theorem (Theorem 92).

Lemma 172. Suppose that |−KX |G =;. Then lct
(
X ,G

)= lct2
(
X ,G

)= 2.

Proof. Firstly, observe that from Section 6.1.3 it follows that the only possibilities for G such

that
(
X ,G

)
is minimal and |−KX |G =; are

G =Z4
2oS3 or Z4

2oD10.

Suppose that there exists λ ∈ Q such that lct
(
X ,G

) < λ < lct2
(
X ,G

) = 2. Then there is an

effectiveQ-divisor D =∑r
i=0 di Di ≡−KX , where di ∈Q>0 and the Di are prime Weil divisors
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such that the log pair
(
X ,λD

)
is not log canonical.

Suppose that LCS
(
X,λD

)
is not zero-dimensional. Then, without loss of generality, λd1 >

1. Write D = d1(∆1+. . .+∆k )+Ω, where∆1+. . .+∆k is a G-orbit of D1 =∆1 andΩ is a one-cycle

whose support doesn’t contain the G-orbit of D1. Since PicG(X) =Z and is generated by the

anti-canonical divisor (Proposition 18) there exists ξ ∈Z>0 such that ∆1 + . . .+∆k ∈ |−ξKX |G .

Intersecting λD with the anti-canonical class gives

4λ=λD · (−KX ) Êλd1

((
∆1 + . . .+∆k

) · (−KX )
)
> 4ξ.

Therefore ξ= 1, but this implies that |−KX |G is non-empty — contradicting our assumptions.

Hence LCS
(
X,λD

)
is zero-dimensional and by Corollary 93 consists of at most five points.

Suppose LCS
(
X,λD

)
consists of precisely

(i) one point. Then by projective duality, there exist a G-invariant hyperplane section of

X . This belongs to the anti-canonical linear system — a contradiction.

(ii) two points. Then by duality, there exist a product of hyperplane sections on X that is G-

invariant. This belongs to the bi-anti-canonical linear system. However, |−2KX |G does

not contain any products of hyperplanes for G =Z4
2oS3 or Z4

2oD10 — a contradiction.

(iii) three points. If one or more of these points is fixed under the action of G then we must

have a G-invariant hyperplane or product of hyperplanes, arguing as before. Thus, the

group acts without fixing any points of LCS
(
X,λD

)
. However, for either group there

are no orbits of length three. Indeed, for G = Z4
2oS3 we may see this using direct

calculation. For G =Z4
2oD10, the length of the orbit does not divide the order of G —

contradicting the Orbit-Stabiliser theorem.

(iv) four points. Again, by previous arguments, the group must have an orbit of four points.

However, by direct calculation this is impossible.

(v) five points. If one or more of these points is fixed under the action of G then we must

have a G-invariant hyperplane or product of hyperplanes, arguing as before. Thus, the

group acts without fixing any points of LCS
(
X,λD

)
. However, for either group there



6. Exceptional del Pezzo Surfaces 141

are no orbits of length five. Indeed, for G = Z4
2oD10 we may see this using direct

calculation. For G =Z4
2oS3, the length of the orbit does not divide |G|.

Theorem 173. Let X be a smooth minimal del Pezzo G-surface of degree four with the pre-

scribed automorphism group G, then

lct
(
X ,Aut(X)

)=



1 if Aut(X) =Z4
2,

1 if Aut(X) =Z4
2oZ2,

1 if Aut(X) =Z4
2oZ4,

2 if Aut(X) =Z4
2oS3,

2 if Aut(X) =Z4
2oD10.

6.4.3 Results for individual automorphism groups

Let X be a smooth minimal del Pezzo G-surface of degree four such that G = Aut(X) and

x0, . . . , x4 be homogeneous coordinates on P4. Denote the automorphism ϕ : X −→ X map-

ping

(x0 : x1 : x2 : x3 : x4) 7→ (
ϕ(x0) :ϕ(x1) :ϕ(x2) :ϕ(x3) :ϕ(x4)

)
by [

ϕ(x0),ϕ(x1),ϕ(x2),ϕ(x3),ϕ(x4)
]
,

and let εk = e
2πi

k be the kth primitive root of unity. All notations are described in detail in

Chapter 5.

6.4.3.1 Aut(X) =Z4
2

Lemma 174.

lct
(
X ,Z4

2

)= lct1
(
X ,Z4

2

)= 1.

Equation of surface and group action
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Equation of X :
4∑

i=0
x2

i =
4∑

i=0
αi x2

i = 0,

with αi 6=α j for i 6= j .

Generators of Aut(X ):

s1 = [x0,−x1, x2, x3, x4], . . . , s4 = [x0, x1, x2, x3,−x4].

Action of G on | −KX | The action of Z4
2 on H 0

(
X ,OX (−KX )

)
implies that the only curves

Ci ∈ |−KX |G are the hyperplane sections of X , Ci = {xi = 0}|X for 0 É i É 4.

Singularities of G-invariant curves in |−KX |

Claim 175.

lct1
(
X ,Z4

2

)= 1.

Proof. The curves C0, . . . ,C4 ∈ |−KX |G are smooth curves on X .

6.4.3.2 Aut(X) =Z4
2oZ2

Lemma 176.

lct
(
X ,Z4

2oZ2
)= 1.

Equation of surface and group action

Equation of X :
4∑

i=0
x2

i = x2
0 +ax2

1 −x2
2 −ax2

3 = 0,

with a 6= ±1,0, i ,± 1
i
p

3
,−2±p

5.

Generators of Aut(X ):

si = (xi 7→ −xi ), g = [x2, x3, x0, x1, x4],
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for i ∈ {1, . . .4}.

Proof of Lemma 176. By Lemma 170, it is enough to exhibit a curve C ∈ |−KX |G . Let C =
{x4 = 0}|X , then C ∈ |−KX |G .

6.4.3.3 Aut(X) =Z4
2oZ4

Lemma 177.

lct
(
X ,Z4

2oZ4
)= lct1

(
X ,Z4

2oZ4
)= 1.

Equation of surface and group action

Equation of X :
4∑

i=0
x2

i = x2
0 + i x2

1 −x2
2 − i x2

3 = 0.

Generators of Aut(X ):

si = (xi 7→ −xi ), g = [x1, x2, x3, x0, x4],

for i ∈ {1, . . .4}.

Proof of Lemma 177. By Lemma 170, it is enough to exhibit a curve C ∈ |−KX |G . Let C =
{x4 = 0}|X , then C ∈ |−KX |G .

6.4.3.4 Aut(X) =Z4
2oS3

Lemma 178.

lct
(
X ,Z4

2oS3
)= lct2

(
X ,Z4

2oS3
)= 2.

Equation of surface and group action

Equation of X :

x2
0 +ε3x1 +ε2

3x2 +x2
3 = x2

0 +ε2
3x2

1 +ε3x2
2 +x2

4 = 0.
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Generators of Aut(X ):

si = (xi 7→ −xi ), g1 = [x0, x2, x1, x4, x3], g2 = [x1, x2, x0,ε3x3,ε2
3x4],

for i ∈ {1, . . .4}.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. Since the only members of |−KX |Z4
2 are the curves Ci = {xi = 0}|X for i = 0, . . . ,4 and

these are not invariant under the action of G , |−KX |G is empty.

Action of G on |−2KX |

Claim 179. The only members of |−2KX |Z4
2 are the curves

C =
{
λ0x2

0 +·· ·+λ4x2
4 = 0

∣∣∣ (λ0 : . . . :λ4) ∈P4
}
|X and D =

{
xi x j = 0

∣∣∣ i 6= j
}
|X .

Proof. Obvious from the action of s1, . . . , s4.

Examining the action of the generator g2 on we see that the only curve in |−2KX | invariant

under the action of the whole group G is the curve C = {x2
0 +x2

1 +x2
2 = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,Z4

2oS3
)= 2.

Proof. It can be easily checked that C ∈ |−2KX |G is non-singular.



6. Exceptional del Pezzo Surfaces 145

6.4.3.5 Aut(X) =Z4
2oD10

Lemma 180.

lct
(
X ,Z4

2oD10
)= lct2

(
X ,Z4

2oD10
)= 2.

Equation of surface and group action

Equation of X :
4∑

i=0
εi

5x2
i =

4∑
i=0

ε4−i
5 x2

i = 0.

Generators of Aut(X ):

si = (xi 7→ −xi ), g1 = [x1, x2, x3, x4, x0], g2 = [x4, x3, x2, x1, x0],

for i ∈ {1, . . .4}.

Action of G on |−KX |

Claim. |−KX |G =;.

Proof. As for G =Z4
2oS3.

Action of G on |−2KX | By Claim 179 and observing the action of the generators g1 and g2,

we see that the only curve in |−2KX |G is C = {x2
0 + . . .+x2

4 = 0}|X .

Singularities of G-invariant curves in |−2KX |

Claim.

lct2
(
X ,Z4

2oS3
)= 2.

Proof. It can be easily checked that C ∈ |−2KX |G is non-singular.
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6.5 Degree Five

6.5.1 Background

Let X be a del Pezzo surface of degree five. Then X is isomorphic to a blow-up

π : X −→P2

of P2 in four points, A1, . . . , A4 in general position, that is, no three lie on a line. The surface X

has ten (−1)-curves — these are the pull-backs of the four points A1, . . . A4; E1, . . . ,E4 and for

1 É i , j É 4; i 6= j the
(4

2

)= 6 strict transforms of the lines Li j through pairs of points Ai and A j

we denote by Di j as in Figure 6.6 (see Section 5.1.2). Since we are free to map any four points

to any other four under a projective map (all quadrilaterals are similar), it follows that there

is only one isomorphism class for X . Thus from Proposition 79 we see that

Aut(X)∼= S5.

E1

E2

E3

E4

Figure 6.6: The ten (−1)-curves on a

del Pezzo surface of degree five.

To describe this action, observe that there are five

sets of four skew exceptional divisors on X . These are:

• F1 =
{
E1,D23,D24,D34

}
;

• F2 =
{
E2,D13,D14,D34

}
;

• F3 =
{
E3,D12,D14,D24

}
;

• F4 =
{
E4,D12,D13,D23

}
;

• F5 =
{
E1,E2,E3,E4

}
.

The action of S5 on X can be visualised as an

action of S4 that leaves the set F5 invariant and permutes the sets F1 to F4 composed with an

element that transposes the sets F4 and F5.
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6.5.2 General results

Let H be a finite subgroup of Aut(X) and let Z be the divisor formed from the sum of all the

exceptional curves on X . Then

Z =
4∑

k=1
Ek +

4∑
i , j=1;i 6= j

Di j ,

and clearly this is a member of |−2KX |H , from which follows this Lemma.

Lemma 181. The pluri-anti-canonical linear system |−2KX | contains H-invariant members,

that is, |−2KX |H 6= ;.

From [Che08] (Theorem 33),

lct
(
X , I

)= 1

2
,

where I is the trivial group.

It follows from this and Lemma 181 above that:

Corollary 182.
1

2
É lct

(
X , H

)É 2.

Dolgachev and Iskovskikh in [DI10] show that the only subgroups, H ÉS5 such that the

H-surface
(
X , H

)
is minimal are S5,A5,Z5oZ4,Z5oZ2

∼= D10, or Z5. Cheltsov in [Che08]

calculates the global H-invariant log canonical thresholds for
(
X ,S5

)
,
(
X ,A5

)
and

(
X ,Z5

)
which we present below (cf. Proposition 34). To answer Question C of Section 3.2, it remains to

decide on the (weak-)exceptionality of the two H-surfaces
(
X ,Z5oZ2

∼= D10
)

and
(
X ,Z5oZ4

)
.

Theorem 183. Let X be a smooth minimal del Pezzo G-surface of degree five with the pre-
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scribed automorphism group G,

lct
(
X ,G

)=



2 if G = Aut(X) =S5,

2 if G =A5,

1 if G =Z5oZ4,

4
5 if G =Z5oZ2

∼= D10,

4
5 if G =Z5,

1
2 if G = I .

6.5.3 Results for individual automorphism groups

Let X be a smooth minimal del Pezzo G-surface of degree five such that G = Aut(X).

6.5.3.1 Aut(X) =Z5

Lemma 184 ([Che08, Lemma 5.8]).

lct
(
X ,Z5

)= 4

5
.

Proof. It is known that the action of Z5 =G on X has precisely two fixed points, O1 and O2

([RS02]). There exist five conics on X passing through each point O1 and O2. Let the five

passing though O1 be C1, . . . ,C5, then

5∑
i=1

Ci ∈ |−2KX |G .

The log canonical threshold of this curve is 2
5 , and hence lct

(
X ,G

)É 4
5 .

For a contradiction, suppose that lct
(
X ,G

)< 4
5 .

Then there exists an effective G-invariant Q-divisor D ∼Q −KX such that the log pair(
X ,λD

)
is not log canonical for some λ ∈Q such that lct

(
X ,G

)<λ< 4
5 .

By Lemmata 93 and 96 LCS
(
X,λD

)
is zero-dimensional and consists of at most one point,

P . Thus P = O1 or O2 and without loss of generality we may assume P = O1. We may also
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assume that the support of D doesn’t contain the conics C1, . . . ,C5 by Convexity (Lemma 5).

Intersecting C1 and D yields

2 =C1 ·D Ê multP D. (6.8)

Let π : U −→ X be the blowup of X at the point P =O1 with exceptional divisor E =π−1(P )

and let DU be the strict transform of D on U . Then, by Remark 11 , there exists a point Q ∈ E

such that

multQ DU Ê 2

λ
−multP D > 5

2
−multP D.

P2

X U V
R

EV

F

ξ

ϕ

π

CU
1

CU
5

τ1

τ5

ϕ(Q)

ϕ(CU
5 )

ϕ(CU
1 )

C5

P

C4

C3
C1 C2

Figure 6.7:
(
S5,Z5

)
— the maps π : U −→ X ,ϕ : U −→P2 and ξ : V −→U .

The point Q must be G-invariant, since otherwise

multP D = E ·DU Ê 5multQ DU > 5(
5

2
−multP D),

which implies that multP D > 2, contradicting inequality (6.8).

Write CU
i for the strict transforms of the conics Ci on U , then Q ∉∪5

i=1CU
i and there exists

a birational morphism ϕ : U −→P2 that contracts the CU
i . Under ϕ, the π-exceptional divisor

E is a conic on P2 containing the pointsϕ(CU
i ). For i ∈ {1, . . . ,5}, let Ti be the strict transforms
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of the lines τi passing through ϕ(Q) and ϕ(CU
i ) — see Figure 6.7.

Observe that the log pair
(
X , λ3

∑5
i=1π(Ti )

)
has log terminal singularities,

5∑
i=1

π(Ti )∼Q 3D,

and by Convexity we may assume that Supp(DU )* Ti . Intersecting T1 with DU gives

3−multP D Ê T1 ·DU Ê multQ DU ,

that is,

multP D +multQ DU Ê 3. (6.9)

Let ξ : V −→U be the blowup of the point Q ∈ E with exceptional divisor F and let EV ,DV

be the strict transforms of E ,DU on V , respectively. Then we have

KV +λDV ∼ (π◦ξ)∗
(
KX +λD

)+ (1−λmultP D)EV + (
2−λmultQ DU −λmultP D

)
F

hence the log pair

(
V ,λDV + (

λmultP D −1
)
EV + (

λmultQ DU +λmultP D −2
)
F

)
(6.10)

is not log terminal at some point R ∈ F .

The point R ∉ EV . Indeed, suppose the contrary and let LV be the strict transform of the

line L on P2 that is tangent to the conic ϕ(E ) at the point ϕ(Q). Then R ∈ LV and intersecting

LV and DV gives the contradiction

5−2multP D −multQ DU = LV ·DV Ê multR DV > 5−2multP D −multQ DU .

Thus the log pair (
V ,λDV + (λmultQ DU +λmultP D −2)F

)
is not log terminal at R.
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Observe that the divisor λD + (
λmultQ DU +λmultP D −2

)
F is effective, hence

multR DV > 3

λ
−multQ DU −multP D > 15

4
−multQ DU −multP D.

Writing T V
i for the strict transforms of the Ti on V for i ∈ {1, . . . ,5}, suppose that R ∈ T V

k

for some 1 É k É 5. Then we have that

3−multQ DU −multP D = T V
k ·DV Ê multP DV > 15

4
−multQ DU −multP D

— a contradiction. Hence R ∉∪5
i=1T V

i .

Let M be an irreducible curve on V such that R ∈ M . Thenϕ◦ξ(M) is a line on P2 passing

through ϕ(Q), which implies that π◦ξ(M) has an ordinary double point at P ∈ X . However,

since we may assume that M * Supp(D) and π◦ξ(M)∼Q −KX as R ∉∪5
i=1T V

i we have that

5−2multP D −multQ DU Ê M ·DV Ê multR DV > 15

4
−multP D −multQ DU

that is

multP D É 5

4

— a contradiction, since multP D > 5
4 .

Remark 185. The curve
∑5

i=1 Ci ∈ |−2KX |Z5 is the only example of a wild tiger,∆ on a surface

S, we found in |−mKS |Aut(S) such that lct
(
S,Aut(S)

)É m−1.

6.5.3.2 Aut(X) =Z5oZ2
∼= D10

Lemma 186.

lct
(
X ,D10

)= 4

5
.

Proof. Since Z5 is a subgroup, it follows from Lemma 184 that lct
(
X ,G

) Ê 4
5 . Suppose that

lct
(
X ,G

)< 4
5 , then there exists an effectiveQ-divisor D ≡−KX such that the log pair

(
X ,λD

)
is not log canonical for λ ∈Qwith lct

(
X ,G

)<λ< 4
5 .
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By Lemmata 93 and 96 LCS
(
X,λD

)
is zero-dimensional and consists of at most one point,

P . This point P must be unique in its G-orbit and hence is fixed. Passing through it are five

conics C1, . . . ,C5 and their sum C =∑5
i=0 Ci is a G-invariant member of |−2KX |. By Convexity

(Corollary 6), we may assume that Ci * Supp(D) for 1 É i É 5 and hence

2 =C1 ·D Ê multP D.

We may now follow the construction of the proof of Lemma 184 from inequality (6.8) reaching

a contradiction as before.

Lemma 187.

lct
(
X ,G) É 1.

Proof. We prove that there exists a G-invariant curve in the anti-canonical linear system

|−KX |. First let us let us examine the action ofS5 on H 0
(
X ,OX (−KX )

)
. The symmetric group

S5 has seven conjugacy classes:

Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

Σ7



containing the



identity;

ten two-cycles;

twenty three-cycles;

thirty four-cycles;

twenty-four five-cycles;

fifteen even elements of order two;

twenty elements of order six.

The character table of S5 is shown in Table 6.1.

It is known that the S5-action on H 0
(
X ,OX (−KX )

) ∼= C6 is the unique irreducible six-

dimensional action with character vector χ7 = (6,0,0,0,1,−2,0) ([RS02, Theorem 2], cf. Ta-

ble 6.1).
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class Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7

size 1 10 20 30 24 15 20
order 1 2 3 4 5 2 6

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1
χ3 4 2 1 0 −1 0 −1
χ4 4 −2 1 0 −1 0 1
χ5 5 1 −1 −1 0 1 1
χ6 5 −1 −1 1 0 1 −1
χ7 6 0 0 0 1 −2 0

Table 6.1: Character Table for S5.

To show that there is a curve in |−KX |G we show that the action of D10 on

H 0(X ,OX (−KX )
)∼= C6

splits as C1 ⊕C1 ⊕C2 ⊕C2. The dihedral group

D10
∼= Z5oZ2 =

〈
a, x

∣∣∣ a5 = x2 = 1, xax−1 = a−1
〉

has character table given in Table 6.2 (ϕ is the golden mean 1+p5
2 ; ϕ= 1−p5

2 ) and four conju-

gacy classes:

Γ1

Γ2

Γ3

Γ4


=



{
identity

}
;{

a, a−1};{
a2, a−2};{
x, ax, a2x, a3x, a4x

}
.

class Γ1 Γ2 Γ3 Γ4

size 1 2 2 5
order 1 5 5 2

γ1 1 1 1 1
γ2 1 1 1 −1
γ3 2 −ϕ −ϕ 0
γ4 2 −ϕ −ϕ 0

Table 6.2: Character Table for D10.

To understand how the action of D10 on H 0
(
X ,OX (−KX )

)∼= C6 splits we consider how to
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write the restricted character χ7|D10 as a sum of the irreducible characters of D10. Observe

then the inclusions of the conjugacy classes of D10 in those of S5: Γ1 ⊆Σ1, Γ2 ⊆Σ5, Γ3 ⊆Σ5,

Γ4 ⊆Σ6. It follows that

χ7|D10 = 2γ2 +γ3 +γ4

and hence the action splits as advertised asC1⊕C1⊕C2⊕C2 and so we must have G-invariant

curves in |−KX |.

6.5.3.3 Aut(X) =Z5oZ4

Lemma 188.

lct
(
X ,Z5oZ4

)= 1.

Proof. The group Z5oZ4 =G acts without fixed points, thus it follows from Lemma 28 that

lct
(
X ,G

)Ê 1. Furthermore from Lemma 189, lct
(
X ,G

)É 1 — hence result.

Lemma 189.

lct
(
X ,G

)É 1.

Proof. Similarly to the previous Lemma, we show that the action of Z5oZ4 on

H 0(X ,OX (−KX )
)∼= C6

splits as C1 ⊕C1 ⊕C4 by examining the restricted character χ7|Z5oZ4 .

The group

Z5oZ4 =
〈

a, x
∣∣∣ a5 = x4 = 1, xax−1 = a2

〉
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has character table as shown in Table 6.3 and five conjugacy classes:

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5


=



{
identity

}
;{

a, a2, a3, a4};{
x, ax, a2x, a3x, a4x

}
;{

x2, ax2, a2x2, a3x2, a4x2 y
}
;{

x3, ax3, a2x3, a3x3, a4x3 y
}
.

class Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

size 1 4 5 5 5
order 1 5 2 4 4

ψ1 1 1 1 1 1
ψ2 1 1 1 −1 −1
ψ3 1 1 1 i −i
ψ4 1 1 1 −i i
ψ5 4 −1 0 0 0

Table 6.3: Character Table for Z5oZ4.

We have the inclusions of the conjugacy classes ofZ5oZ4 in those ofS5: Ψ1 ⊆Σ1,Ψ2 ⊆Σ5,

Ψ3 ⊆Σ6, Ψ4,Ψ5 ⊆Σ4. It follows that

χ7|Z5oZ4 =ψ1 +ψ2 +ψ5,

and hence the action splits as C1 ⊕C1 ⊕C4 and it follows that we have G-invariant curves in

|−KX |.

6.5.3.4 Aut(X) =A5

Lemma 190 ([Che08, Lemma 5.7]).

lct
(
X ,A5

)= 2.

Proof. The result follows from Lemma 97, the fact thatA5 has no orbits of length less than or

equal to five and that theA5-invariant anti-canonical linear system |−KX |A5 is empty.
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Indeed, suppose that A5 has an orbit of length n where 1 É n É 5. Then, by the Orbit-

Stabiliser Theorem, the stabiliser H must have order 60,30,20,15,24 or 10. As A5 has only

subgroups of orders 1,2,3,4,5,6,10,12 or 60, the only possibility is that H ∼= A5. However,

A5 doesn’t have a faithful two-dimensional representation — contradicting the fact that the

stabiliser of a point acts faithfully on its tangent space.

There are noA5-invariant divisors in the anti-canonical linear system: A5 has five conju-

gacy classes — the even conjugacy classes ofS5; Σ1,Σ3,Σ6 and two conjugacy classes Σ5a ,Σ5b

whose union is the conjugacy class Σ5 of S5. The character table ofA5 is shown in Table 6.4,

where ϕ= 1+p5
2 and ϕ= 1−p5

2 .

class Σ1 Σ3 Σ5a Σ5b Σ6

size 1 20 12 12 15
order 1 3 5 5 2

ξ1 1 1 1 1 1
ξ2 3 0 ϕ ϕ −1
ξ3 4 1 −1 −1 0
ξ4 3 0 ϕ ϕ 0
ξ5 5 −1 0 0 1

Table 6.4: Character Table forA5.

It is known that the S5-action on H 0
(
X ,OX (−KX )

) ∼= C6 is the unique irreducible six-

dimensional action with character vector χ7 = (6,0,0,0,1,−2,0) ([RS02, Theorem 2], cf. Ta-

ble 6.1). The S5-character χ7 restricted toA5 can be written as

χ7|A5 = ξ2 +ξ4,

which shows that the action ofA5 on H 0
(
X ,OX (−KX )

)∼= C6 splits as C3 ⊕C3 and hence

|−KX |A5 =;.

6.5.3.5 Aut(X) =S5

Lemma 191 ([Che08, Example 5.5]).

lct
(
X ,S5

)= 2.
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Proof. This is an easy application of Lemma 97 and Lemma 181. Using the facts that S5 has

no orbits of length less than or equal to six and |−KX |S5 is empty.

These are both easy to see: For the first, suppose that S5 has an orbit of length n

where 1 É n É 6. Then, by the Orbit-Stabiliser Theorem, the stabiliser H must have or-

der 120,60,40,30,24 or 20. As S5 has no subgroups of order 30 or 40, the only possibilities for

H are S5,A5,S4 or the subgroup of order 20 generated by a five-cycle and a four-cycle. How-

ever, none of these subgroups has a faithful two-dimensional representation — contradicting

the fact that the stabiliser of a point acts faithfully on its tangent space.

For the second, it is known that theS5-action on H 0
(
X ,OX (−KX )

)∼= C6 is the unique irre-

ducible six-dimensional action with character vector χ7 = (6,0,0,0,1,−2,0) ([RS02, Theorem

2], cf. Table 6.1).
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6.6 Degree Six

6.6.1 Background

Let X be a del Pezzo surface of degree six. We may describe X equivalently as:

• the blow-up of P2 in three non-collinear points P1,P2,P3. Since any three points in

P2 are equivalent under linear automorphisms of P2 there is only one isomorphism

class. From Section 5.1.2 we see that X has six (−1)-curves — three exceptional divisors

E1,E2,E3 over the blown-up points P1,P2,P3, respectively on P2 and the strict trans-

form Li j of the three lines though any two of the points Pi , P j for 1 É i , j É 3; i 6= j .

These lines are arranged in a hexagon on X (as in Figure 6.8);

• the image in P6 of the rational map ϕ :P2 −→P6 which maps

(x : y : z) 7→ (x2 y : x2z : x y2 : x y z : xz2 : y2z : y z2),

where x, y, z are homogeneous coordinates on P2. This map is given by the linear

system of cubics passing through the points A1 = (1 : 0 : 0), A2 = (0 : 1 : 0) and A3 = (0 :

0 : 1);

• the set {(
(x1 : y1 : z1), (x2 : y2 : z2)

)∣∣∣x1x2 = y1 y2 = z1z2

}
⊂P2 ×P2,

where for i = 1,2; xi , yi , zi are homogeneous coordinates on each factor of P2. The

projection on to one factor contracts E1,E2,E3 and the projection on to the other

contracts the L12,L13,L23;

• the set {
X0X1X2 = Y0Y1Y2

}⊂P1 ×P1 ×P1,

where for i = 0,1,2; Xi ,Yi are homogeneous coordinates on each factor of P1. In fact,
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the map f :P2 ×P2 −→P1 ×P1 ×P1 defined by

fx
(
(x0 : y0 : z0), (x1 : y1 : z1)

)= (yi : zi ) = (X0 : Y0),

fy
(
(x0 : y0 : z0), (x1 : y1 : z1)

)= (xi : zi ) = (X1 : Y1),

fz
(
(x0 : y0 : z0), (x1 : y1 : z1)

)= (xi : yi ) = (X2 : Y2),

map isomorphically X ⊂P2 ×P2 to
{

X0X1X2 = Y0Y1Y2
}⊂P1 ×P1 ×P1.

E1

E2

E3
L13

L12

L23

E1

E3

E2

τ

Figure 6.8: The standard Cremona quadratic transformation, τ.

Remark 192. The birational morphism of P2 induced by the projection of X ⊂ P2 ×P2 to

either factor is the famous standard Cremona quadratic transformation of P2 (Figure 6.8)

τ : (x : y : z) 7→
(

1

x
:

1

y
:

1

z

)
.

Write G = Aut(X), then by Lemma 78 Aut(X) has infinite order. In fact, X is toric with a fan

given by the dual of the hexagon of lines E1,E2,E3 and L12,L13,L23 (see, for example, [Blu10]).

In addition to the torus action on X there is the action of Z2 and S3. Z2 acts by changing

the factors P2 of X ⊂ P2 ×P2 and S3 arises from the diagonal action on the coordinates

x0, y0, z0; x1, y1, z1. The actions of S3 and Z2 commute and we have the split short exact

sequence

1 −→ T −→ Aut(X) −→Z2 ×S3 −→ 1,
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where T is the torus acting on X . Another way to see this is to examine the Weyl group WX , it

turns out ([DI10, Section 6.2]) that WX =Z2 ×S3 and the representation ρ : Aut(X) −→WX is

surjective with kernel T .

6.6.2 General results

The divisor formed by the sum of all six of the lines is clearly H-invariant for any subgroup

H of the full automorphism group, as this is also a member of the first anti-canonical linear

system we have that

lct
(
X , H

)É 1.

Hence there are no exceptional del Pezzo H-surfaces of degree six.

From [Che08] (Proposition 33) we know that

lct
(
X , I

)= 1

2
,

where I is the trivial group.

Thus for any subgroup H of Aut(X) we have:

Lemma 193.
1

2
É lct

(
X , H

)É 1.

6.6.3 Weakly-exceptional criterion

To answer Question C of Section 3.2 we need to list all minimal pairs
(
X ,G

)
such that

lct
(
X ,G

) = 1. From [DI10, Theorem 6.3], we know that subgroups of Aut(X) such that the

pair
(
X ,G

)
is minimal are isomorphic to H•〈τ̃〉, where τ̃ is the lift of the standard quadratic

transformation on P2 (see Remark 192) under the blowup map and H is a imprimitive finite

subgroup ofPGL3(C) (Definition 63). A list of imprimitive subgroups ofPGL3(C) can be found

in Section 6.9.
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Theorem 194. For a smooth del Pezzo G-surface S6 of degree six such that PicG(S6) =Z,

lct
(
S6,G

)= 1

if, and only if,
(
S6,G

)
has no G-fixed points.

Proof. The reverse implication is the content of Lemma 28. Suppose then that
(
X ,G

)
is

weakly-exceptional and assume for a contradiction that there exists a G-fixed point P on

X . There are six (−1)-curves, E1,E2,E3 and L12,L13,L23, arranged in a hexagon on X and

we may contract either set of three disjoint (−1)-curves to get a birational morphism σ :

X −→P2. Writing Ξi for the curves contracted under σ, we may assume that σ(P ) ∉Ξi since

otherwise the divisorΞi is G-invariant and the rank of the G-Picard group is greater than one.

However, this assumption also leads to a contradiction. Let Qi =σ(Ξi ); Λi be the lines on

P2 passing through Qi and the point σ(P ); and Λi the strict transforms of the lines Λi . Then

D =∑3
i=1(Λi +Ξi ) ≡−KX is an effective G-invariant divisor on X such that lct

(
X ,D

)= 1
3 .

Example 195. Let G = Z2
2oS3, acting on X = {

X0Y0Z0 − X1Y1Z1 = 0
} ⊂ P1 ×P1 ×P1. Then

G ∼= S4,
(
X ,G

)
is a del Pezzo G-surface of degree six and as G acts without fixed points ([BT05,

Section 1.1]),

lct
(
X ,G

)= 1.

Since G also is of the form H•〈τ̃〉 with H imprimitive, Pi cG (X ) =Z ([DI10, Theorem 6.3]) —

that is, (
X ,S4

)
is a minimal weakly-exceptional pair.

6.6.4 Further research

To answer Question C fully, we need to run through all the imprimitive finite subgroup

of PGL3(C), H and decide which groups H•〈τ̃〉 have fixed points. We leave this for further

research. Another approach to answer Question C, is to use the following theorem of Cheltsov

and Shramov.

Let N =Zn be a lattice of rank n, and let M = Hom
(
N ,Z

)
be the dual lattice. Let V be a
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toric variety defined by a complete fan Σ⊂ NR, let

∆1 =
{

v1, . . . , vm
}

be a set of generators of one-dimensional cones of the fan Σ. Put

∆=
{

w ∈ M
∣∣∣〈w, vi 〉 Ê−1 for all i = 1, . . . ,m

}
.

Put T = (C∗)n ⊂ Aut(V). Let N be the normaliser of T in Aut(V) and W=N/T .

Lemma 196 ([CS08, Lemma 6.1]). Let G ⊂W be a subgroup. Suppose that V is Q-factorial.

Then

lct
(
V ,G

)= 1

1+max
{
〈w, v〉 | w ∈∆G , v ∈∆1

} ,

where ∆G is the set of the points in ∆ that are fixed by the group G.
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6.7 Non-Kähler-Einstein del Pezzo Surfaces

Suppose X is a smooth del Pezzo surface that does not admit a Kähler-Einstein metric, then

X is the blowup of P2 in one or two points by Theorem 53. Necessarily, for any finite group H

acting regularly on X , this means that neither of these possibilities can be H-exceptional as

by the contra-positive of Theorem 52, lct
(
X , H

)É 2
3 .

6.7.1 Degree seven

Let X be a del Pezzo surface of degree seven with H É Aut(X) a finite (sub-)group of automor-

phisms. Recall from Section 5.1.2, that X contains three lines — the exceptional curves E1 and

E2 over the points of the blow-up of P2 and the strict transform L of the line on P2 through

these points. Thus we see that
(
X , H

)
is always non-minimal; indeed, for any group acting

on X , L must be unique in its orbit and thus we may equivariantly blow it down yielding a

H-equivariant map to P1 ×P1.

Observe that

3L+2E1 +2E2 ∈ |−KX |H .

Hence, lct
(
X , H

)É 1
3 for any H É Aut(X) and so there are no exceptional del Pezzo H-surfaces

of degree seven. In fact, since lct
(
X , I

)= 1
3 we have the following.

Theorem 197.

lct
(
X , H

)= 1

3
,

for any group H É Aut(X).

6.7.2 The blow-up of P2 in one point, F1 =PP1

(
OP1 ⊕OP1 (1)

)
Let F1 =PP1

(
OP1 ⊕OP1 (1)

)
. Then F1 is clearly non-minimal as it has a unique (−1)-curve. It is

easy to see that the automorphisms of F1 is the group of automorphisms of the projective

plane fixing one point. That is, if P ∈P2 is the point of the blow-up then

Aut(F1)∼=
{

g ∈PGL3(C)
∣∣∣g(P) = P

}
.
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From Theorem 33 we know that lct(F1) = 1
3 . It follows from this and the contra-positive of

Theorem 52 that we have for any finite H É Aut(F1) the following lemma.

Lemma 198.
1

3
É lct

(
F1, H

)É 2

3
.

6.8 The Smooth Quadric Cone

Let X = F0 =P1 ×P1, then

Aut(X)∼= PO4(C)∼= PGL2(C) oS2
∼= (

PGL2(C)
)2oS2,

where PO4(C) is the projective orthogonal group of dimension four over C and o is the wreath

product. As we alluded to above, we can answer at present Question B only for those sub-

groups of Aut(X) which are of the form A× A for A ÉPGL2(C). To answer this question fully

we hope to continue as described in Section 6.8.1.

Let us examine finite subgroups of PGL2(C). These are well known to be isomorphic to

one of the following polyhedral groups:

• a cyclic group, Cn ;

• a dihedral group, D2n ;

• the tetrahedral group, T ∼= A4 of order 12;

• the octahedron group, O∼= S4 of order 24;

• the icosahedron group, I ∼= A5 of order 60.

First we recall the answer to Question B for P1. Shokurov shows in [Sho93] (cf. [MP99b,

Example 1.5] and [CS09, Theorem 1.25]) that for a two-dimensional quotient singularity(
V 3 P

)= (
C2 3 0

)/
G ,

(
V 3 P

)
is exceptional if and only if the corresponding image inPGL2(C),

π(G), is either dihedral, tetrahedral or icosahedral. If Conjecture 67 is true, then we have all

groups such that lct
(
P1,π(G)

)> 1. Otherwise suppose that G is not dihedral, tetrahedral or
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the icosahedron group. Then lct
(
P1,π(G)

)É 1 and so the pair
(
P1,π(G)

)
is non-exceptional

and we are done.

The following result is a generalisation of Lemma 2.30 in [CS08] taking into account an

action of a finite group G . In fact, the proof goes through verbatim.

Theorem 199 (cf. [CS08, Lemma 2.30]). Let U and V be smooth Fano varieties such that a

finite group G acts on both. Then

lct
(
U ×V ,GU ×GV

)= min
(
lct

(
U ,GU

)
, lct

(
V ,GV

))
,

where GU , GV are the actions of G on U and V respectively.

Proof. It is clear that lct
(
U ,GU

)
, lct

(
V ,GV

)Ê lct
(
U ×V ,GU ×GV

)
. Suppose, to obtain a con-

tradiction, that

lct
(
U ×V ,GU ×GV

)< min
(
lct

(
U ,GU

)
, lct

(
V ,GV

))
.

Then there exists a GU ×GV -invariant effectiveQ-divisor ∆ such that ∆∼Q −KU×V and the

log pair
(
U ×V ,λ∆

)
is not log canonical at some point P ∈U ×V where

λ< min
(
lct

(
U ,GU

)
, lct

(
V ,GV

))
.

Identify V with the fibre of the projection U ×V −→U containing the point P . Suppose

that

lctV
(
U ×V ,∆

)Ê lct
(
V ,DV

)
,

where DV ∼∆|V . Clearly DV ∼−KV and is GV -invariant, hence

lct
(
V ,DV

)= lct
(
V ,−KV

)= lct
(
V ,GV

)
.

However we also have that

lct
(
V ,G

)>λÊ lctV
(
U ×V ,∆

)
,

by the definitions of λ and lctV
(
U ×V ,∆

)
. Using Hwang’s Product Theorem (included below
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as Proposition 200), we see that for all points O,Q ∈V we have that

lctO
(
U ×V ,∆

)= lctQ
(
U ×V ,∆

)
.

Hence
(
U ×V ,λ∆

)
is not log canonical at all points of V ⊆ U ×V , which implies that V ∈

LCS
(
U ×V ,λ∆

)
.

Identifying U with a general fibre of the projection U ×V −→V , we see that DU ∼Q −KU

is GU -invariant, where DU ∼∆|U . However, by Lemma 89 (applied dim(V ) times)

V ∈ LCS(
U ×V ,λ∆

)⇐⇒U ∩V ∈ LCS(
U ,λDU

)
that is to say that the log pair

(
U ,λDU

)
is not log canonical in U∩V — howeverλ< lct

(
U ,GU

)
,

a contradiction.

Proposition 200 ([Hwa07, Product Theorem]; [CS08, Theorem 2.28]). Let X ,Y be varieties

with log terminal singularities, let ϕ : X −→ Y be a surjective morphism such that ϕ is smooth

in a neighbourhood of a fibre F of ϕ and let ∆ be an effectiveQ-divisor on X . Then either

lctF
(
X ,∆

)Ê lct
(
F,D

)
where D ∼∆|F , or

lctO
(
X ,∆

)= lctQ
(
X ,∆

)
for all points O,Q ∈ F .

Corollary 201. Let A be a finite subgroup of PGL2(C) such that lct
(
P1 ×P1, A× A

)> 1. Then

A∼= A5,A4 or D2n for some n ∈N.

6.8.1 Further research

What other finite subgroups of Aut
(
P1 ×P1

)
remain to be checked? Goursat in his 1889

paper [Gou89] classified finite subgroups of O4(C). It turns out that a finite subgroups of

Aut
(
P1×P1

)
is either of the form A×B for A,B ÉPGL2(C) or it is one of the groups in Table 6.5

([DI10, Theorem 4.9]).
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1
60 [I × I ] ∼= I ∼= [3,5]+
1

60 [I × I ] ∼= I ∼= [3,3,3]+
1

24 [O ×O] ∼= O ∼= [3,4]+
1

24 [O ×O] ∼= O ∼= [2,3,3]+
1

12 [T ×T ] ∼= T ∼= [3,3]+
1
2 [O ×O] ∼= (

T ×T
)
oZ2

∼= [3,4,3]+
1
6 [O ×O] ∼= Z4

2oS3
∼= [3,3,4]+

1
3 [T ×T ] ∼= Z4

2oZ3
∼= [+3,3,4+]

1
2 [D2m ×D4n] ∼= (

Zm ×D2n
)•
Z2 m,n ≥ 2

1
4 [D4m ×D4n] ∼= (

Zm ×Zn
)
oZ4 m,n odd

1
2k [D2bk ×D2SK ]s

∼= (
Zm ×Zn

)
oD2k (s,k) = 1

1
2k [D2M s ×D2nk ]s

∼= (
Zm ×Zn

)
oD2k (s,2k) = 1;m,n odd

1
k [Zmk ×Znk ]s

∼= (
Zm ×Zn

)
•Zk (s,k) = 1

1
k [Zmk ×Znk ]s

∼= (
Zm ×Zn

)
•Zk (s,2k) = 1;m,n odd

1
2 [D2m ×O] ∼= (

Zm ×T
)
oZ2

1
2 [D4m ×O] ∼= (

D2m ×T
)
oZ2 m ≥ 2

1
6 [D6n ×O] ∼= (

Zm ×Z2
2

)
oS3 m ≥ 2

1
2 [Z2m ×O] ∼= (

Zm ×T
)
•Z2 split if m = 1

1
3 [Z3m ×T ] ∼= (

Zm ×Z2
2

)
•Z3 split if m = 1

1
2 [D4m ×D4n] ∼= (

D2m ×D2n
)•
Z2 m,n ≥ 2

1
2 [Z2m ×D4n] ∼= (

Zm ×D2n
)•
Z2 n ≥ 2

1
2 [Z2m ×D2n] ∼= (

Zm ×Zn
)
oZ2

∼= Zm •D2n

Table 6.5: Finite subgroups of Aut
(
P1 ×P1

)
not conjugate to A×B for A,B ÉPGL2(C).

Definition 202 ([DI10, Section 4.3]). We define the notation used in Table 6.5. The sym-

bol [p1, . . . , pr ] refers to the Coxeter group defined by the Coxeter diagram and we write

• • • • •
p1 p2 pr· · ·

[p1, . . . , pr ]+ to denote the index 2 subgroup of even length words in standard generators

of the Coxeter group. If exactly one of the numbers p1, . . . , pr is even, say pk , there are two

other subgroups of index 2 denoted by [p1, . . . , p+
r ] (resp. [+p1, . . . , pr ]). They consist of words

which contain each generator R1, . . . ,Rk−1 (resp. Rk+1, . . . ,Rr ) even number of times. The

intersection of these two subgroups is denoted by [+p1, . . . , p+
r ]. For example,

D2n = [n], T = [3,3]+, O = [3,4]+, I = [3,5]+.

We denote [p1, . . . , pr ] the quotient of [p1, . . . , pr ] by its center.

We expect a similar result as Theorem 62 for P1 ×P1, however at this time we have only a
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necessary condition. We leave for future work checking conditions (6.11) and the assumption

of the non-existence of certain four point orbits of Theorem 203 against the above list of

possible automorphism groups of P1 ×P1. We hope this scheme will allow us to answer

Question B of Section 3.2 in full.

Theorem 203 (Cheltsov). Let X =P1 ×P1 and G be a finite subgroup of Aut(X). Suppose that

for lines L1 and L2, one on each ruling, that

|L1|G

|L2|G

|2L1|G

|2L2|G

|L1 +L2|G

|2L1 +L2|G

|L1 +2L2|G

|2L1 +2L2|G



=;. (6.11)

In addition, assume that there is no orbit of exactly four points on X which imposes indepen-

dent linear conditions on global sections of H 0
(
X ,L1 +L2

)
. Then

lct
(
X ,G

)> 1.

Proof. In fact, if lct
(
X ,G

)> 1, then lct
(
X ,G

)Ê 3
2 . Let λ< 3

2 . Suppose there exists G-invariant

divisor D ≡ 2(L1 +L2) ≡−KX such that the pair
(
X ,λD

)
is not lc. Observe that for ni Ê 1,

H 1
(

X ,L

(
X ,

3

2
D

)
⊗

(
−KX + 3

2
D

))
= H 1

(
X ,L

(
X ,

3

2
D

)
⊗ (

n1L1 +n2L2
))= 0,

where L
(
X , 3

2 D
)

is the sub-scheme of log canonical singularities of the pair
(
X ,λD

)
. By

condition (6.11), L
(
X , 3

2 D
)

is O-dim.

We have the short exact sequence

0 −→ H 0
(

X ,L

(
X ,

3

2
D

)
⊗ (

L1 +L2
))−→ H 0(X ,L1 +L2

)−→ H 0
(
L

(
X ,

3

2
D

)
,OL

(
X , 3

2 D
))−→ 0.
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Since H 0
(
X ,L1 +L2

)∼= C4, Corollary 93 implies that there are four or less points in

LCS
(
X,λD

)= Supp
(
L

(
X,

3

2
D

))
.

In fact, there must be exactly four points in general position — however this contradicts our

assumption that there is no orbit of exactly four points on X which imposes independent

linear conditions on global sections of H 0
(
X ,L1 +L2

)
. Indeed, suppose that there is exactly

(i) one point. Then, as the representation of G É PGL4(C) on P1 ×P1 ⊆ P3 gives rise to

a representation on SL4(C)∼= C4, one point must correspond to an invariant line in

C4. Thus, the representation on C4 splits as a direct sum of a one-dimensional and a

three-dimensional one. However, the invariant three dimensional sub-representation

corresponds to an invariant plane in P3 whose intersection with X is a member of

|L1 +L2|G — a contradiction.

(ii) two points. Similarly to the previous case, we must have an element in |2L1 +2L2|G

contradicting our assumptions.

(iii) three points. The three points lie on a plane in P3, which necessarily must be G-

invariant — but this in then a member of |L1 +L2|G , a contradiction.

(iv) four points not in general position. If the points are not in general position then the

lines that they lie on give rise to G-invariant elements in the empty linear systems

(6.11). Specifically, there are four cases that, if excluded, we say that the four points are

in generaln position:

(a) Four points in a ’square’ arrangement produces an element in |2L1 +2L2|G .

(b) Three points on one line produces an element in |L1 +L2|G .

(c) Two points on a line from one ruling and two on a line from the other ruling yields

an element in |L1 +L2|G .

(d) Two lines from the same ruling with two points each yields an element in |2Li |G ,

for i = 1,2.
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6.9 The Projective Plane

A del Pezzo surface of degree nine is isomorphic to the projective plane P2. Its automorphism

group is of course PGL3(C). Assuming Conjecture 67 is true then groups G É GL3(C), such

that the quotient singularity
(
V 3 P

) = (
C3 3 0

)/
G are exceptional correspond one-to-one

with groups π(G) É PGL3(C) such that lct
(
P2,π(G)

) > 1 (in fact lct
(
P2,π(G)

) Ê 4
3 holds by

Theorem 72), that is one-to-one to exceptional pairs
(
P2,π(G)

)
. Here we write π :GL3(C) −→

PGL3(C) for the natural map from GL3(C) to PGL3(C). In this case, the exceptional version

of Question B of Section 3.2 is answered completely by Markushevich-Prokhorov, ([MP99a,

Theorems 1.2, 3.13 & Corollary 3.15]) and Cheltsov-Shramov ([CS09, Theorem 3.18]).

Proposition 204 ([MP99a, Corollary 3.15]). Let G be a finite subgroup of GL3(C) such that

the quotient X =C3
/

G is an exceptional singularity. Then, up to conjugation, G is one of the

following subgroups of SL3(C):

• Klein’s simple group of order 168, PSL2(F7);

• the unique central extension of Klein’s simple group, (of order 504);

• the Hessian group (of order 648);

• the normal subgroup F216 of the Hessian group;

• or a central extension I180 of the alternating groupA6.

If Conjecture 67 turns out to be false then to complete the answer of Question B it is

enough to identify those primitive groups G , who were omitted from the list of Markushevich

and Prokhorov. Indeed, if G is imprimitive then it has a semi-invariant of degree three —

that is a triple of lines in C3 permuted by G . Hence lct
(
P2,π(G)

)É 1 by Lemma 68. Primitive

groups not included in Proposition 204 are those of types E and H in the notation of the

Miller-Blichfeldt-Dickson classification of finite subgroups of GL3(C) ([BDM16, Section 115])

— see the proof of Proposition 205 for a description of types E and H .

Using Lemma 68, the fact that groups of type H have a semi-invariant of degree three

and those of type E have a semi-invariant of degree two we have the following.
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Proposition 205. Let G be a primitive subgroup of GL3(C) and π : GL3(C) −→ PGL3(C) the

natural map. Then

lct
(
P2,π(G)

)


É 2
3 if G is of type H — i.e. π(G)∼= A5,

É 1 if G is of type E (|π(G)| = 36),

> 1 otherwise.

Proof. For full details on the groups of type E and H see [BDM16, Section 115]. We summarise

below what is described in detail there.

For groups G of type H , π(G) is the icosahedral group of order 60. Its three-dimensional

representation has an invariant of degree two, which is a semi-invariant of degree two for

any group of type H (cf. [MP99a, Theorem 3.13]).

For groups G of type E , π(G) is a group of order 36. The group G is generated by the

transformations

diag(1,ε3,ε2
3),


0 1 0

0 0 1

1 0 0

 ,


ρ ρ ρ

ρ ρε3 ρε2
3

ρ ρε2
3 ρε3

 ,

where ε3 = e
2πi

3 and ρ = 1
ε3−ε2

3
. Groups of type E ,F and G leave a set of four triangles t1, t2, t3, t4

invariant in C3. π(E) is completely characterised by its image in S4 where it is the subgroup

of order two
{
1,(t1t2)(t3t4)

}
. For i = 1,2,3,4, the ti belong to one pencil of cubics, hence E

acts on a pencil of plane cubics. That is, E acts on the pencil with image Z2 in Aut(P1) and

since any involution on P1 has two fixed points, we have an invariant of degree two. Thus,

any group of type E has a semi-invariant of degree two (cf. [MP99a, Lemma 3.14]).

The proof is now complete on applying Proposition 204 and Theorem 72.

6.9.1 Further research

To answer completely our Question B, we need to identify those additional finite groups

G such that lct
(
P2,π(G)

)Ê 1. A complete list of finite sub-groups of PGL3(C) is well known

— see for example [DI10, Section 4.2]. There the classification is split into three mutually
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exclusive groupings: intransitive; transitive and imprimitive; primitive (see Definition 63).

If G is intransitive, then this corresponds to a reducible representation. Hence we have a

semi-invariant of degree one and by Lemma 68
(
P2,π(G)

)
is not weakly-exceptional

If G is transitive and imprimitive, then we have a semi-invariant of degree three and

hence lct
(
P2,π(G)

) É 1. There are four types of group and we must check each to see if a

global G-log canonical threshold of one is possible.

Theorem 206. Let π(G) be a transitive and imprimitive finite subgroup of PGL3(C), then it is

one of the following.

• Z3
noZ3 with generators

[εn x0, x1, x2], [x0,εn x1, x2], [x2, x0, x1];

• Z3
noS3 with generators

[εn x0, x1, x2], [x0,εn x1, x2], [x0, x2, x1], [x2, x0, x1];

•
(
Zn ×Z n

k

)
oZ3; where k > 1, k|n and s2 − s +1 ≡ 1 (mod k); with generators

[ε n
k

x0, x1, x2], [εs
n x0,εn x1, x2], [x0, x2, x1], [x2, x0, x1];

•
(
Zn ×Z n

3

)
oS3 with generators

[ε n
3

x0, x1, x2], [ε2
n x0,εn x1, x2], [x0, x2, x1], [x1, x0, x2];

In the last case where G is primitive, there are six types of group E ,F, . . . , J . The types

F,G , I and J yield exceptional quotient singularities, and those of types E and H we checked

above in Proposition 205.

As we mentioned in Chapter 3, recently Sakovics in [Sak10] proved the following theorem,

extending the work of Markushevich-Prokhorov and answering completely our Question C

in the weakly-exceptional case.
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Theorem 207 ([Sak10, Theorem 1.20]). Let G ÉGL3(C) be a transitive finite subgroup without

quasi-reflections. Then lct
(
P2,π(G)

)= 1 if, and only if, G is conjugate to a monomial group

that is not isomorphic to a central extension of (Z2)2oZ3 or (Z2)2oS3.

Sketch. Using Theorem 74 it is enough to run through the Yau-Yu classification of finite

subgroups of SL3(C) and check those that admit semi-invariants of degree one or two.
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Chapter 7
Tables of Results

Below we include, for convenience, tables of the results of Chapter 6 on the calculations of

the global G-invariant log canonical thresholds of smooth minimal del Pezzo G-surfaces(
Sd ,G

)
where G is the full group of automorphisms of Sd . Firstly, we include Table 7.1 which

answers Question A of Section 3.2 — that is, for a fixed Sd , when does there exist a finite

group G É Aut(Sd) such that the pair
(
Sd ,G

)
is G-(weakly-)exceptional?

smooth del Pezzo surface of degree 1 2 3 4 5 6 7 8F1 8P1×P1 9

weakly-exceptional Y Y Y Y Y Y N N Y Y
exceptional Y Y Y Y Y N N N Y Y

Table 7.1: Exceptional and weakly-exceptional smooth del Pezzo G-surfaces.

Smooth del Pezzo of degree five, S5

Aut(S5) |Aut(S5)| Page ref. lct
(
S5,Aut(S5)

)
S5 120 p 156 2

A5 60 p 155 2

Z5oZ4 20 p 154 1

Z5oZ2 10 p 151 4
5

Z5 5 p 148 4
5

I 1 p 18 1
2

Table 7.2: Smooth del Pezzo surfaces of degree five.
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Smooth del Pezzo of degree four, S4

Aut(S4) |Aut(S4)| Page ref. lct
(
S4,Aut(S4)

)
Z4

2oD10 160 p 145 2

Z4
2oS3 96 p 143 2

Z4
2oZ4 64 p 143 1

Z4
2oZ2 32 p 142 1

Z4
2 16 p 141 1

I 1 p 18 2
3

Table 7.3: Smooth del Pezzo surfaces of degree four.

Smooth del Pezzo of degree three, S3

Aut(S3) |Aut(S3)| Page ref. lct
(
S3,Aut(S3)

)
Conditions

Z3
3oS4 648 p 136 4

S5 120 p 135 2

Z3
(
Z2

3oZ4
)

108 p 134 1

Z3
(
Z2

3oZ2
)

54 p 133 1

S4 24 p 131 1

S3 ×Z2 6 p 131 1

S3 6 p 127 1

Z2 ×Z2 4 p 127 2
3

Z8 8 p 126 2
3

Z4 4 p 125 2
3

Z2 2 p 124 2
3

I 1 p 18 3
4 S3 has no Eckardt points

I 1 p 18 2
3 S3 has an Eckardt point

Table 7.4: Smooth del Pezzo surfaces of degree three.
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Smooth del Pezzo of degree two, S2

Aut(S2) |Aut(S2)| Page ref. lct
(
S2,Aut(S2)

)
Conditions

PSL2(F7)×Z2 336 p 119 2(
Z2

4oS3
)×Z2 192 p 118 2

Z4•A4 ×Z2 72 p 117 1

S4 ×Z2 48 p 116 2(
D8oZ2

)×Z2 32 p 115 1

Z18 18 p 109 3
4

D8 ×Z2 16 p 114 1

S3 ×Z2 12 p 112 1

Z2 ×Z6 12 p 113 3
4

Z2 ×Z2 ×Z2 6 p 111 1

Z6 6 p 108 3
4

Z2 ×Z2 4 p 110 1 |−KX |Z2×Z2 has no cusps or tacnodes

Z2 ×Z2 4 p 110 5
6 |−KX |Z2×Z2 contains cusps, no tacnodes

Z2 ×Z2 4 p 110 3
4 |−KX |Z2×Z2 contains tacnodes

Z2 2 p 107 1 |−KX | has no cusps or tacnodes

Z2 2 p 107 5
6 |−KX | contains cusps, no tacnodes

Z2 2 p 107 3
4 |−KX | contains tacnodes

I 1 p 18 5
6 |−KX | contains cusps, no tacnodes

I 1 p 18 3
4 |−KX | contains tacnodes

Table 7.5: Smooth del Pezzo surfaces of degree two.
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Smooth del Pezzo of degree one, S1

Aut(S1) |Aut(S1)| Page ref. lct
(
S1,Aut(S1)

)
Conditions

Z6•D12 72 p 97 2

Z3 ×Z2•S4 72 p 99 5
3

Z30 30 p 77 5
6

Z2•D12 24 p 90 2

Z3 ×D8 24 p 94 5
3

Z2 ×Z12 24 p 75 1

Z24 24 p 76 5
6

Z2•A4 20 p 92 2

Z20 20 p 74 5
6

Z2 ×Z3•D6 18 p 95 2

D16 16 p 87 5
3

D12 12 p 84 2

Z12 12 p 73 5
6

Z2 ×Z6 12 p 71 1

Z10 10 p 70 5
6

D8 8 p 77 2

D8 8 p 77 5
3

X = {
t 2 + z3 + bzx2 y2 + x y(c(x4 + y4) + d x2 y2) = 0

}
with c 6= 0 and d 6= 0

Z2•D4 8 p 82 2

Z2•D4 8 p 82 5
6

X = {
t 2 + z3 + z(a(x4 + y4) + bx2 y2) + x y(x4 − y4) = 0

}
with a = 0 or 2(1+εk

4 )+ε2k
4 b = 0

Z2•D4 8 p 82 5
3

X = {
t 2 + z3 + z(a(x4 + y4) + bx2 y2) + x y(x4 − y4) = 0

}
with 2a ±b = 0

Z4 ×Z2 8 p 68 1

Z8 8 p 69 5
6

Z6 6 p 65 1

Z2 ×Z2 4 p 63 1

Z4 4 p 64 1

Z4 4 p 64 5
6

X = {
t 2+z3+z(ax4+bx2 y2+c y4)+x y(d x4+ex2 y2+ f y4) = 0

}
with a = 0 or c = 0 (but not a = 0, c = 0 and d = f concurrently)

Z2 2 p 63 1 |−KX | has no cusps

Z2 2 p 63 5
6 |−KX | contains cusps

I 1 p 18 1 |−KX | has no cusps

I 1 p 18 5
6 |−KX | contains cusps

Table 7.6: Smooth del Pezzo surfaces of degree one.
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