1S Calculus

Chapter 2

University of Glasgow

February 2013

э

Definition

An ordinary differential equation (ODE) is an equation involving:

- an independent variable x,
- a dependent variable y(x), and

• at least one of the derivatives
$$\frac{dy}{dx}, \frac{d^2y}{dx^2}, \ldots$$

If $\frac{d^n y}{dx^n}$ is the highest order derivative appearing in the equation, then the equation is an *n*-th order ordinary differential equation.

Example

For example,
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 6y = x^4$$
 is a 2nd order ODE.

Ordinary differential equations

Definition

Let $f, g \in \{y, y', y'', \ldots\}$. An ODE is *linear* if it satisfies the following:

- i) f occurs only in the 1st-degree (i.e. no y^r or $(y^{(n)})^r$).
- ii) No products $f \cdot g$ appear in the equation.
- iii) No transcendental function of f occurs.

An ODE not satisfying the above conditions is called non-linear.

Example (Orders and linearity)

$y'' + y = x^2$	linear	second-order
$xy''' + (y')^2 - y\sin x = \log x$	nonlinear	third-order
$(y')^5 + y^2 = 0$	nonlinear	fifth-order
$y'' + \sin(y) = 0$	nonlinear	second-order
p(x)y' + q(x)y = 0	linear	first-order
y' + z = x	a system of	
$z'' - y = \sin x$	coupled ODEs	second-order

Ordinary differential equations

Example (Particular and general solutions)

i) For the linear ODE $\frac{d^2y}{dx^2} + y = 0$, $y = \sin x$ is a solution. However, it is not the only solution — $y = \cos x$ is also a solution. These are called **particular solutions (PS)**. In fact, for constants a, b any linear combination, $a \sin x + b \cos x$, of these particular solutions is a solution, called the **general solution (GS)**.

ii) Solve
$$y'' = 20x^3$$
.

Remarks

- i) If we give c_1 and c_2 particular values we get a **PS**. Every PS is obtainable in this way.
- ii) Solving an *n*-th order ODE is **likely** to involve *n* integrations. Thus, the general solution of an *n*-th order ODE involves *n* arbitrary constants.

2.1 1st order separable ODEs

Definition

First order separable ODEs can be written in the form

$$\frac{dy}{dx} = g(x)h(y)$$

We can rewrite this as $\frac{1}{h(y)}\frac{dy}{dx} = g(x)$.

Example (Solution of some ODEs)

i) a) Find the GS of
$$\frac{dy}{dx} = 4x^3y^2$$
.
b) Find the PS satisfying $y(0) = 1$.
ii) Solve $\frac{dy}{dx} = (6x^2 + 1)y$, where y is a positive variable.
iii) Find the GS of $\frac{dy}{dx} = ky$ where k is constant.

Definition (Integrating factor)

An integrating factor (IF) $\mu(x)$ has the property that multiplication of the expression

$$p(x)\frac{dy}{dx} + q(x)y(x)$$

by $\mu(\boldsymbol{x})$ turns the expression into a total derivative

$$rac{d}{dx}\left(\mu(x)p(x)y(x)
ight).$$

Example

Solve the following first order ordinary differential equations by finding an integrating factor.

i)
$$x\frac{dy}{dx} - 3y = x^5$$
 ii) $\frac{dy}{dx} + \left(\frac{x+2}{x}\right)y = e^{-x}$

2.3 Second order linear ODEs with constant coefficients

Definition

Second order linear ODEs with constant coefficients take the form

$$py'' + qy' + ry = f(x),$$
 (1)

where p, q, r are constants, y(x) is the solution to the ODE and f(x) is some function. When f(x) = 0 for all x then (1) is a homogeneous equation. When $f(x) \neq 0$ for some x then (1) is an inhomogeneous equation.

Lemma

Suppose $y = \varphi(x)$ is a solution to (1), then the general solution of equation (1) is

$$y(x) = CF + PI = CF + \varphi(x),$$

where the complementary function (CF) is the general solution to py'' + qy' + ry = 0.

2.3 Second order linear ODEs with constant coefficients

Theorem (General solution of homogeneous second-order ODE)

The exponential e^{mx} is a solution of py'' + qy' + ry = 0 if m satisfies the Auxiliary equation (AE)

$$pm^2 + qm + r = 0.$$

Technique

AE has	general solution, $y(x) =$
2 distinct real roots, m_1, m_2	$c_1 e^{m_1 x} + c_2 e^{m_2 x}$
2 repeated roots, m	$c_1 e^{mx} + c_2 x e^{mx}$
2 complex roots, $lpha \pm ieta$	$e^{\alpha x}(c_1\cos(\beta x) + c_2\sin(\beta x))$

Example (Find the general solutions to the following ODEs)

i)
$$y'' - 5y' + 6y = 0$$

ii) $y'' - 6y' + 9y = 0$
iii) $y'' - 2y + 5y = 0$

iv)
$$y'' + 9y = 0$$

v) $y'' - 9y = 0$

2.4 Simple harmonic motion

A special 2nd order ODE with constant coefficients is:

$$\frac{d^2y}{dx^2} + \omega^2 y = 0,$$
(2)

where $\omega > 0$ is a constant.

This equation describes small oscillations of a pendulum or of a mass attached to a spring obeying Hooke's law (force \sim compression). The general solution of (2) is

$$y = c_1 \cos \omega x + c_2 \sin \omega x. \tag{3}$$

where c_1 and c_2 are arbitrary constants. (3) can be alternatively expressed in **amplitude–phase** form as

$$y = A\sin(\omega x + \varphi),\tag{4}$$

where A and φ are an arbitrary constants.

2.4 Simple harmonic motion

Solutions, $y = A \sin(\omega x + \varphi)$, of $y'' + \omega^2 y = 0$ are oscillations, so called **simple harmonic oscillations**.

- Every nonzero solution of $y'' + \omega^2 y = 0$ is a simple harmonic oscillator with period $2\pi/\omega$.
- The frequency of oscillations is ω (in radians per second) or $\omega/2\pi$ (in cycles per second or Hz).
- The constant A is the **amplitude** of the oscillation and φ is the **phase**.

2.4 Simple harmonic motion with damping

Most physical oscillations are often subject to small frictional/resistant force proportional to the velocity $\frac{dy}{dx}$. Then the governing ODE for damped simple harmonic motion, with coefficient of damping k is,

$$y'' + \underbrace{2ky'}_{\text{friction}} + \omega^2 y = 0.$$
 (5)

coefficient of damping, k	system is
$k < \omega$	underdamped
$k > \omega$	overdamped
$k=\omega$	critically damped

The general solution of (5) is

$$y = e^{-kx}(c_1 \cos \sqrt{\omega^2 - k^2}x + c_2 \sin \sqrt{\omega^2 - k^2}x),$$

or equivalently $y = Ae^{-kx}\sin(\sqrt{\omega^2 - k^2}x + \alpha)$. This is **damped oscillation**.

2.4 Simple harmonic motion

2.5 Finding particular integrals (PIs)

Particular integrals are particular solutions y(x) to the inhomogenous

$$py'' + qy' + ry = f(x).$$

Technique		
f(x)	trial PI, $y(x)$	conditions of AE
polyn. of deg. n	$a_0 + a_1 x + \dots + a_n x^n$	
$a\cos\alpha x + b\sin\alpha x$	$A\cos\alpha x + B\sin\alpha x$	ilpha not a root
	$x(A\cos\alpha x + B\sin\alpha x)$	ilpha is a root
$ae^{lpha x}$	$Ae^{lpha x}$	lpha not a root
	$Axe^{\alpha x}$	lpha is a non-rep. root
	$Ax^2e^{\alpha x}$	lpha is a repeated root

Note If $f(x) = f_1(x) + f_2(x) + \cdots + f_n(x)$, where each $f_i(x)$ is one of the types above, then find PIs $y_1(x), y_2(x), \ldots, y_n(x)$ for each $f_i(x)$ separately. Then the PI is $y(x) = y_1(x) + y_2(x) + \cdots + y_n(x)$.

2.5 Finding particular integrals (PIs)

Example (Find the general solution for the following ODEs)

- i) Find the General Solution of $y'' + 3y' + 2y = 6e^{2x}$.
- ii) Find the General Solution of $y'' + 3y' + 2y = 10\cos 2x$.

Example (Extra examples)

Find the general solution to the following inhomogeneous ODEs:

i)
$$y'' - 2y' - 8y = 10e^{-x}$$
.
ii) $y'' - 2y' - 8y = 12e^{4x}$.
iii) $y'' - 4y' + 4y = 6e^{2x}$.
iv) $y'' - 6y' + 5y = 6\cos x + 22\sin x$
v) $y'' + 9y = -24\cos 3x - 6\sin 3x$.
vi) $y'' + 8y' + 16y = 16x^2 + 26$.