1S Calculus

Sections 1.14 - 1.15

University of Glasgow

January 2013

1.14 Logarithmic integrals

Theorem

$$\int \frac{f'(x)}{f(x)} dx = \log|f(x)| + c.$$

Example

Find the following indefinite and definite integrals

i)
$$\int \frac{\cos x}{5 + \sin x} \, dx,$$

$$ii) \int \frac{3x}{x^2 + 1} \, dx,$$

iii)
$$\int \frac{4x-3}{x^2-4x+13} \, dx$$
,

iv)
$$\int_0^{\sqrt{2}} \frac{3x+4}{x^2+2} dx$$
.

1.14 Logarithmic integrals

Example

Verify the following Standard Integrals.

$$\int \cot x \, dx = \log|\sin x| + c,$$

and

$$\int \tan x \, dx = \log|\sec x| + c.$$

Definition (Rational function)

A rational function r(x) is the ratio of two polynomial functions

$$r(x) = \frac{p(x)}{q(x)}$$

where p(x) and q(x) are polynomials. If $\deg p < \deg q$ then r(x) is a proper rational function, otherwise it is *improper*. Improper rational functions can be written as the sum of a polynomial and a proper rational function, via polynomial long division.

Example

A proper rational function

$$\frac{x^2 + 3x + 1}{x^3 - 5x^2 + 3}.$$

Example (Rational functions and integration)

The following examples use rational functions.

i) Write the improper rational function

$$\frac{x^4 + x^3 - 2x^2 + 21x - 6}{x^2 + 3x - 1}$$

as the sum of a polynomial and a proper rational function.

ii) What is
$$\int \frac{x^2}{x+1} dx$$
?

Technique (Partial Fractions)

Given a proper rational function $\frac{p(x)}{q(x)}$, we can factor q(x) into a product of irreducible polynomials. These polynomial factors are either linear or irreducible quadratics. The table below relates the irreducible factors to the partial fractions.

Factorisation	produces:

Partial fractions

Distinct linear factors
$$(x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n)$$

$$\alpha_1 \neq \alpha_2 \neq \cdots \neq \alpha_n$$

$$\frac{A_1}{x-\alpha_1} + \frac{A_2}{x-\alpha_2} + \dots + \frac{A_n}{x-\alpha_n}$$

$$A_1, A_2, \dots, A_n \text{ constants}$$

Repeated factors

include
$$r$$
 terms

e.g.
$$(x-\alpha)^r$$
, $r\geqslant 2$

e.g.
$$\frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \cdots + \frac{A_r}{(x-\alpha)^r}$$

Irreducible quadratic factor

(has no real roots)
e.g.
$$x^2 + px + q$$

$$\frac{Ax+B}{x^2+px+q}$$

Example (Use of partial fractions in integration)

i)
$$\int \frac{9x+3}{(x-1)(x+2)(x-3)} dx$$

ii) $\int \frac{1}{x^2 - a^2}$, where a > 0 is a constant.

iii)
$$\int \frac{x^2-4x+15}{(x-1)^2(x+2)}$$

iv)
$$\int \frac{x^2+2x-17}{(x-3)(x^2-6x+10)}$$