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Ordinary differential equations

Definition

An ordinary differential equation (ODE) is an equation involving:

an independent variable x,

a dependent variable y(x), and

at least one of the derivatives
dy

dx
,
d2y

dx2
, . . ..

If
dny

dxn
is the highest order derivative appearing in the equation, then

the equation is an n-th order ordinary differential equation.

Example

For example, x2
d2y

dx2
− 2x

dy

dx
+ 6y = x4 is a 2nd order ODE.
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Ordinary differential equations

Definition

Let f, g ∈ {y, y′, y′′, . . .}. An ODE is linear if it satisfies the following:

i) f occurs only in the 1st–degree (i.e. no yr or (y(n))r).

ii) No products f · g appear in the equation.

iii) No transcendental function of f occurs.

An ODE not satisfying the above conditions is called non–linear.

Example (Orders and linearity)

y′′ + y = x2 linear second-order

xy′′′ + (y′)2 − y sinx = log x nonlinear third-order

(y′)5 + y2 = 0 nonlinear fifth-order

y′′ + sin(y) = 0 nonlinear second-order

p(x)y′ + q(x)y = 0 linear first-order

y′ + z = x a system of
z′′ − y = sinx coupled ODEs second-order
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Ordinary differential equations

Example (Particular and general solutions)

i) For the linear ODE
d2y

dx2
+ y = 0, y = sinx is a solution. However,

it is not the only solution — y = cosx is also a solution. These
are called particular solutions (PS). In fact, for constants a, b
any linear combination, a sinx+ b cosx, of these particular
solutions is a solution, called the general solution (GS).

ii) Solve y′′ = 20x3.

Remarks

i) If we give c1 and c2 particular values we get a PS. Every PS is
obtainable in this way.

ii) Solving an n-th order ODE is likely to involve n integrations.
Thus, the general solution of an n-th order ODE involves n
arbitrary constants.
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2.1 1st order separable ODEs

Definition

First order separable ODEs can be written in the form

dy

dx
= g(x)h(y)

We can rewrite this as
1

h(y)

dy

dx
= g(x).

Example (Solution of some ODEs)

i) a) Find the GS of
dy

dx
= 4x3y2.

b) Find the PS satisfying y(0) = 1.

ii) Solve
dy

dx
= (6x2 + 1)y, where y is a positive variable.

iii) Find the GS of
dy

dx
= ky where k is constant.
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2.2 Integrating factor

Definition (Integrating factor)

An integrating factor (IF) µ(x) has the property that multiplication
of the expression

p(x)
dy

dx
+ q(x)y(x)

by µ(x) turns the expression into a total derivative

d

dx
(µ(x)p(x)y(x)) .

Example

Solve the following first order ordinary differential equations by finding
an integrating factor.

i) x
dy

dx
− 3y = x5 ii)

dy

dx
+

(
x+ 2

x

)
y = e−x
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2.3 Second order linear ODEs with constant coefficients

Definition

Second order linear ODEs with constant coefficients take the form

py′′ + qy′ + ry = f(x), (1)

where p, q, r are constants, y(x) is the solution to the ODE and f(x)
is some function. When f(x) = 0 for all x then (1) is a homogeneous
equation. When f(x) 6= 0 for some x then (1) is an inhomogeneous
equation.

Lemma

Suppose y = ϕ(x) is a solution to (1), then the general solution of
equation (1) is

y(x) = CF + PI = CF + ϕ(x),

where the complementary function (CF) is the general solution to
py′′ + qy′ + ry = 0.
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2.3 Second order linear ODEs with constant coefficients

Theorem (General solution of homogeneous second-order ODE)

The exponential emx is a solution of py′′ + qy′ + ry = 0 if m satisfies
the Auxiliary equation (AE)

pm2 + qm+ r = 0.

Technique

AE has general solution, y(x) =

2 distinct real roots, m1,m2 c1e
m1x + c2e

m2x

2 repeated roots, m c1e
mx + c2xe

mx

2 complex roots, α± iβ eαx(c1 cos(βx) + c2 sin(βx))

Example (Find the general solutions to the following ODEs)

i) y′′ − 5y′ + 6y = 0

ii) y′′ − 6y′ + 9y = 0

iii) y′′ − 2y + 5y = 0

iv) y′′ + 9y = 0

v) y′′ − 9y = 0
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2.4 Simple harmonic motion

A special 2nd order ODE with constant coefficients is:

d2y

dx2
+ ω2y = 0, (2)

where ω > 0 is a constant.

This equation describes small oscillations of a pendulum or of a mass
attached to a spring obeying Hooke’s law (force ∼ compression).
The general solution of (2) is

y = c1 cosωx+ c2 sinωx. (3)

where c1 and c2 are arbitrary constants.
(3) can be alternatively expressed in amplitude–phase form as

y = A sin(ωx+ ϕ), (4)

where A and ϕ are an arbitrary constants.
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2.4 Simple harmonic motion
Solutions, y = A sin(ωx+ ϕ), of y′′ + ω2y = 0 are oscillations, so
called simple harmonic oscillations.

cycle has period 2π/ω

x

y

A

−A

Every nonzero solution of y′′ + ω2y = 0 is a simple harmonic
oscillator with period 2π/ω.

The frequency of oscillations is ω (in radians per second) or ω/2π
(in cycles per second or Hz).

The constant A is the amplitude of the oscillation and ϕ is the
phase.
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2.4 Simple harmonic motion with damping
Most physical oscillatiors are often subject to small frictional/resistant

force proportional to the velocity
dy

dx
. Then the governing ODE for

damped simple harmonic motion, with coefficient of damping k is,

y′′ + 2ky′︸︷︷︸
friction

+ω2y = 0. (5)

coefficient of damping, k system is

k < ω underdamped
k > ω overdamped
k = ω critically damped

The general solution of (5) is

y = e−kx(c1 cos
√
ω2 − k2x+ c2 sin

√
ω2 − k2x),

or equivalently y = Ae−kx sin(
√
ω2 − k2x+ α).

This is damped oscillation.
Chapter 2 1S Calculus



2.4 Simple harmonic motion

y = Ae−kx

y = −Ae−kx

x

y

A

−A

The envelope of oscillations is Ae−kx
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2.5 Finding particular integrals (PIs)

Particular integrals are particular solutions y(x) to the inhomogenous

py′′ + qy′ + ry = f(x).

Technique

f(x) trial PI, y(x) conditions of AE

polyn. of deg. n a0 + a1x+ · · ·+ anx
n

a cosαx+ b sinαx A cosαx+B sinαx iα not a root
x(A cosαx+B sinαx) iα is a root

aeαx Aeαx α not a root
Axeαx α is a non-rep. root
Ax2eαx α is a repeated root

Note If f(x) = f1(x) + f2(x) + · · ·+ fn(x), where each fi(x) is one
of the types above, then find PIs y1(x), y2(x), . . . , yn(x) for each fi(x)
separately. Then the PI is y(x) = y1(x) + y2(x) + · · ·+ yn(x).
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2.5 Finding particular integrals (PIs)

Example (Find the general solution for the following ODEs)

i) Find the General Solution of y′′ + 3y′ + 2y = 6e2x.

ii) Find the General Solution of y′′ + 3y′ + 2y = 10 cos 2x.

Example (Extra examples)

Find the general solution to the following inhomogeneous ODEs:

i) y′′ − 2y′ − 8y = 10e−x.

ii) y′′ − 2y′ − 8y = 12e4x.

iii) y′′ − 4y′ + 4y = 6e2x.

iv) y′′ − 6y′ + 5y = 6 cosx+ 22 sinx.

v) y′′ + 9y = −24 cos 3x− 6 sin 3x.

vi) y′′ + 8y′ + 16y = 16x2 + 26.
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