1S Calculus

Chapter 5 – Limits

University of Glasgow

March 2013

Chapter 5 – Limits 1S Calculus

э

You should be familiar with the following results

• For any
$$\alpha > 0$$
, $\frac{1}{x^{\alpha}} \to 0$ as $x \to \infty$.
• For any fixed $x \in (0, 1)$, $x^n \to 0$ as $n \to \infty$.
• $\lim_{x \to 0} \frac{\sin x}{x} = 1$.
• $\tan x = \frac{\sin x}{\cos x}$ and at $x = \frac{\pi}{2}$ there is a vertical asymptote.
 $\lim_{x \to \infty} \tan^{-1} x = \frac{\pi}{2}$.
Similarly,
 $\lim_{x \to -\infty} \tan^{-1} x = -\frac{\pi}{2}$.

 $\bullet\,$ Tug of war between $\exp\,$ and $\lim:$

Function	Potency in limits
Exponential	Dominant (Always wins)
Powers of x (polynomials)	Middling
Logarithms	Feeble (Always loses)

 $0 < \log x < x$ for all x > 1

• For $\alpha > 0$,

۲

$$rac{\log x}{x^{lpha}}
ightarrow 0$$
 as $x
ightarrow \infty$

• For any constant α ,

$$x^{lpha}e^{-x}
ightarrow 0$$
 as $x
ightarrow\infty$

As $x \to \infty$ the **exponential dominates** the polynomial x^2 .

5.2 Improper integrals of the first kind

Consider integrals of the form
$$\int_{a}^{\infty} f(x) dx$$
 (or $\int_{-\infty}^{a} f(x) dx$).

Definition

The improper integral is defined as

$$\int_{a}^{\infty} f(x) \, dx = \lim_{M \to \infty} \int_{a}^{M} f(x) \, dx$$

if the limit exists. Similarly,
$$\int_{-\infty}^{a} f(x) \, dx = \lim_{M \to -\infty} \int_{M}^{a} f(x) \, dx.$$

Example (Evaluate the following improper integrals) i) $\int_{2}^{\infty} \frac{1}{x^{2}} dx.$ ii) $\int_{2}^{\infty} \frac{1}{\sqrt{x}} dx.$

5.2 Improper integrals of the first kind

Example (Evaluate the following improper integrals)

i)
$$\int_{1}^{\infty} \frac{1}{x^{5}} dx$$

ii)
$$\int_{1}^{\infty} \frac{1}{x^{2}+1} dx$$

iii)
$$\int_{0}^{\infty} x e^{-2x} dx$$

iv)
$$\int_{0}^{\infty} \frac{dx}{(x^{2}+4)^{2}}$$

Example (Gabriel's horn)

Calculate the volume of revolution V_M for the curve $y = x^{-1}$, revolved around the x-axis between x = 1 and x = M, calculate the curved surface area A_M for the same volume of revolution. Take the limit $M \to \infty$, do V_M and A_M have limits? Could you finish a drink from Gabriel's horn? Could you paint the inside of the horn? Is this a paradox?